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Information Theory

 Developed by Claude Shannon, 
motivated by problems in 
communications

 A Mathematical Theory of 
Communication,” The Bell System 
Tech J, 1948. Cited ≥ 100,000 times

 Provides a way to quantify 
information suitable for 
engineering applications

 Relies on probability, stochastic 
processes

 Applications in communications, 
data storage, statistics, machine 
learning



Information Theory

 Provides a way to quantify 
information independent of 
representation

 Quantifies mutual information, the 
amount of information one signal 
has about another

 Limits on the shortest 
representation of information 
without losing accuracy

 Trade-off between accuracy and 
representation length

 Limits on the amount of 
information that can be 
communicated

Beyond communication and data storage

(Elements of Inf Theory, Cover and Thomas)



Quantifying information

 Which statement carries more information?

 Tomorrow, the sun will rise in the east.

 P = 1 no information transferred.

 Tomorrow, it will rain in Seattle.

 P = 158/365 = .43, rather likely, could guess either way

 Tomorrow, it will rain in Phoenix.

 P = 36/365 = .1, rather unlikely, significant info

 Tomorrow, Betsy DeVos will call you and explain the central limit 
theorem.

 P = 0 – this would be a major story!

 Conclusion: Mathematical definition of information content is tied to 
(only) probability



Properties of an information 

measure

 𝐼 𝑥 : the information in statement 𝑥

 Desired properties:

 𝐼 𝑥 ≥ 0

 Decreasing function of probability

 If 𝑝 𝑥 → R then 𝐼 𝑥 → 0

 If 𝑥 and 𝑦 are results of independent events, then 𝐼 𝑥 and 𝑦 = 𝐼 𝑥 + 𝐼(𝑦)

 Pr(Virginia beats Florida State & Duke beats UNC) = Pr(Virginia beats Florida 

State) × Pr(Duke beats UNC)

 𝐼(Virginia beats Florida State & Duke beats UNC) = 𝐼(Virginia beats Florida 

State) + 𝐼(Duke beats UNC)



Self-information

 There is a unique function 

satisfying these conditions

𝐼 𝑥 = log
1

𝑝 𝑥

 The base of the log is arbitrary and 

determines the unit

 Base 2 gives the information in bits 

(term coined by Shannon)



Independence from representation

 Our measure of information does not depend on representation

 Both tables carry the same (amount of) information

Mar. 24 25 26 27 28 29 30

Cloudy Rainy Cloudy Sunny Sunny Cloudy Rainy

Mar. 24 25 26 27 28 29 30



Entropy: average information

 Information is defined in the context of a random event with 

uncertain outcomes

 A property of random variables and random processes

 The entropy of a random variable 𝑋 is 

𝐻 𝑋 = 𝐸 𝐼 𝑋 = 𝐸 log
1

𝑝(𝑋)
= ∑𝑝(𝑥) log

1

𝑝(𝑥)

 Entropy: the amount of information generated by a source, on 

average.



Entropy: average information

 Entropy of rolling a die: 



𝑖=1

6

𝑝 𝑖 log
1

𝑝 𝑖
= 6 ×

1

6
log

1

1/6
= log 6 = 2.58 𝑏𝑖𝑡𝑠

 Entropy is a measure of uncertainty/predictability

 Entropy is non-negative (since self-information is non-negative)

 For a random variable 𝑋 that takes 𝑀 values, 

𝐻 𝑋 ≤ log𝑀



Binary Entropy
 Experiment with two outcomes with probabilities 𝑝 and 1 − 𝑝

𝐻 𝑝 = 𝑝 log
1

𝑝
+ 1 − 𝑝 log

1

1 − 𝑝

 Predictability: Weather in Phoenix is more predictable than Seattle



Why “Entropy”?

 My greatest concern was what to call it. I thought of calling it 

‘information,’ but the word was overly used, so I decided to call it 
‘uncertainty.’ When I discussed it with John von Neumann, he had a 

better idea. Von Neumann told me, ‘You should call it entropy, for 

two reasons. In the first place your uncertainty function has been 

used in statistical mechanics under that name, so it already has a 

name. In the second place, and more important, no one really 

knows what entropy really is, so in a debate you will always have the 

advantage.’

Claude Shannon, Scientific American (1971), volume 225, page 180.



Data representation

 We store data as a sequence of bits using a code

 ASCII for representing English text

 𝐴 → 01000001, 𝐵 → 01000010,…

 Bitmap for images

 Storing a genome:

 𝐴 → 00, 𝐺 → 01, 𝐶 → 10, 𝑇 → 11

 The average number of bits per symbol is the average code length

 For a random variable that can take 𝑀 values, need ≤ log𝑀 bits

 The entropy is also bounded by log𝑀



Data compression

 Can we do better than log𝑀, without loosing information?

 Which is easier to store?

 Weather in Phoenix: RSSSSSRSSSSSSSSSSSSSSSSSRSSSS… 

 Weather in Seattle:   RSRSSRRSRSRSRSSSSRSSRSRRRRSSR… 

 Rothko vs Pollock



Data compression

 What is the average length of the shortest representation of a 

random variable (source of information)?

 Example: A genome with non-uniform symbol probabilities:

 The average code length is 2 bits/symbol

A C G T

Probability 1/2 1/4 1/8 1/8

Code 00 01 10 11



Data compression

 What if we choose representation with length equal to self-

information, log 1/𝑝𝑖?

 Average code length: 
1

2
× 1 +

1

4
× 2 +

1

8
× 3 +

1

8
× 3 =

7

4
= 𝐻(𝑋)

 If the length of the representation for each symbol is equal to its self-

information, the average code length equals entropy

A C G T

Probability 1/2 1/4 1/8 1/8

Code 0 10 110 111

Information log 2 = 1 log 4 = 2 log 8 = 3 log 8 = 3



Data compression

 Shannon coding: represent a symbol with probability of 𝑝 with a 

sequence of length log(1/𝑝)

 log(1/𝑝) < log(1/𝑝)+1

 Achieves average code length < 𝐻 𝑋 + 1

 Shannon showed that it’s not possible to do better than entropy

 Shannon’s source coding theorem: the average code length 𝐿 of 

the optimum code satisfies:
𝐻 𝑋 ≤ 𝐿 < 𝐻 𝑋 + 1



Huffman codes

 Shannon codes, while close to entropy, are not necessarily optimal

 To achieve optimality, each bit must divide the probability space to 

two nearly equal halves

A C G T

Prob 1/2 1/4 1/8 1/8

Code 0 10 110 111

0

0

01

1

1

A

C

G

T

C/G/T

G/T



Huffman codes

 Shannon and others, including Huffman’s professor, Fano, tried to 

find an optimal algorithm but were not successful

 Fano gave students a choice of final exam or a term paper solving 

given problems

 Huffman invented an algorithm for finding optimal codes

 Huffman’s algorithm builds the tree in a bottom-up approach, grouping 

smallest probabilities to create super-nodes

 The average code length for the Huffman code is still at least as 

large as the entropy



Relative Entropy

 Suppose the true distribution of a source 𝑋 is given by 𝑝

 Not knowing this true distribution, we construct a code based on a 

distribution 𝑞

 What is the inefficiency caused by this mismatch?

 Average code length with the true and assumed distributions:



𝑥

𝑝 𝑥 log
1

𝑝(𝑥)
, 

𝑥

𝑝 𝑥 log
1

𝑞(𝑥)

 The difference is the relative entropy (aka Kullback-Leibler

divergence)

𝐷(𝑝| 𝑞 =

𝑥

𝑝 𝑥 log
𝑝(𝑥)

𝑞(𝑥)



Relative Entropy

 Relative entropy is used as a measure of difference between 

distributions

 𝐷(𝑝| 𝑞 = 0 if and only if 𝑝 = 𝑞

 Relative entropy is used as loss function in machine learning

 Suppose we are interested in estimating an unknown distribution 𝑝

 We choose a simple class of distributions 𝑄

 We find 𝑞 ∈ 𝑄 that minimizes 𝐷(𝑝||𝑞)

 This results in a distribution 𝑞 that does not under-estimate 𝑝

 Avoids assigning zero probability where 𝑝 𝑥 > 0



Relative Entropy

 Could also choose to minimize 𝐷(𝑞| 𝑝 → different answer

 Tries to not over-estimate 𝑝

𝐷(𝑞| 𝑝 =

𝑥

𝑞(𝑥) log
𝑞(𝑥)

𝑝(𝑥)

 Avoids assigning probability where 𝑝 𝑥 = 0



Cross-entropy

 Recall: 

𝐷(𝑝| 𝑞 =

𝑥

𝑝 𝑥 log
1

𝑞 𝑥
−

𝑥

𝑝 𝑥 log
1

𝑝 𝑥

 𝑞 only appears in the first term, called cross-entropy

𝐻(𝑝| 𝑞 =

𝑥

𝑝 𝑥 log
1

𝑞(𝑥)

 Minimizing relative entropy is the same as minimizing cross-entropy



Joint entropy

 For two random variables 𝑋 and 𝑌, their joint entropy is 

𝐻 𝑋, 𝑌 = 𝐸 log
1

𝑝(𝑋, 𝑌)
= ∑𝑝 𝑥, 𝑦 log

1

𝑝(𝑥, 𝑦)

 𝑋 and 𝑌 are independent if and only if

𝐻 𝑋, 𝑌 = 𝐻 𝑋 + 𝐻(𝑌)

 Example: 𝑋 = 𝐵𝑒𝑟(1/2), 𝑌 = 𝐵𝑒𝑟(1/2), 𝑍 = 𝑋 + 𝑌

𝐻 𝑋 = 𝐻 𝑌 = log 2 = 1, 𝐻 𝑍 = 1.5
𝐻 𝑋, 𝑌 = 𝐻 𝑋 + 𝐻 𝑌 = 2 = 𝐻 𝑋, 𝑍 ≠ 𝐻 𝑋 + 𝐻(𝑍)

X Y Z P

0 0 0 ¼

1 0 1 ¼

0 1 1 ¼

1 1 2 ¼



Conditional entropy

 Conditional entropy of X given Z

𝐻 𝑋 𝑍 =

𝑧

𝑝 𝑧 𝐻(𝑋|𝑍 = 𝑧) =

𝑧

𝑝 𝑧 

𝑥

𝑝(𝑥|𝑧) log
1

𝑝(𝑥|𝑧)

 The uncertainty left in 𝑋 after we learn 𝑍

 Previous example:

𝐻 𝑋 𝑍 =
1

4
× 0 +

1

2
× 1 +

1

4
× 0 =

1

2
, 𝐻 𝑍 𝑋 = 1

 Relationship between joint and conditional entropies

𝐻 𝑋, 𝑍 = 𝐻 𝑋 + 𝐻(𝑍|𝑋)

X Y Z P

0 0 0 ¼

1 0 1 ¼

0 1 1 ¼

1 1 2 ¼



Mutual Information

 𝐼(𝑋; 𝑌): Mutual information 

between two random variables

 The reduction of uncertainty 

about X due to knowledge of Y

 𝐼 𝑋; 𝑌 = 𝐻 𝑋 − 𝐻 𝑋 𝑌

 = 𝐻 𝑌 − 𝐻(𝑌|𝑋)
H(X) H(Y)

I(X;Y) H(Y|X)H(X|Y)

H(X,Y)



Mutual Information

 𝐼 𝑋; 𝑌 = 𝐻 𝑋 − 𝐻 𝑋 𝑌

 Example:

H(X) H(Z)

.5 bit 1 bit.5 bit

X Y Z=X+Y P

0 0 0 ¼

1 0 1 ¼

0 1 1 ¼

1 1 2 ¼

𝐼 𝑋; 𝑍 = 1 −
1

2
= 1.5 − 1 =

1

2𝐼 𝑋; 𝑌 = 1 − 1 = 0

H(X) H(Y)

1 bit1bit



Entropy ≠ (Mutual) Information

 Example: cable news (high entropy, little mutual information to news)



Channel Capacity

 Communication channel

 Due to noise, the input and output are only statistically related

 Shannon Channel Coding Theorem:

 The maximum information rate that can be carried by a communication 
channel, is the maximum mutual information between its input and 
output



Channel Capacity

 Binary symmetric channel → Capacity = 1 − 𝐻(𝑒)

1 − 𝑒

𝑒

𝑒

1 − 𝑒
00

1 1



Data processing inequality

 Random variables X, Y, Z form a Markov chain if X and Z are 

conditionally independent given Y

 Denoted 𝑋 → 𝑌 → 𝑍

 The data processing inequality: If 𝑋 → 𝑌 → 𝑍, then 𝐼 𝑋; 𝑍 ≤ 𝐼(𝑋; 𝑌).

 No processing, whether deterministic or random, can increase the 

amount of information that Y has about X

Nature

X

Data

Y

Processed Data

Z

observation processing



Sufficient statistics

 Consider 

 {𝑝𝜃}: a family of distributions indexed by 𝜃

 X: a sample from this distribution

 T(X): any statistic (function of the sample), e.g., sample mean

 Then 𝜃 → 𝑋 → 𝑇(𝑋)

 𝐼 𝜃; 𝑇 𝑋 ≤ 𝐼(𝜃; 𝑋)

 If 𝐼 𝜃; 𝑇 𝑋 = 𝐼(𝜃; 𝑋), then 𝑇(𝑋) is a sufficient statistic

 The condition is equivalent to 𝜃 → 𝑇 𝑋 → 𝑋

 X is independent of 𝜃 given 𝑇(𝑋)

 The sufficient statistic contains all the information in X about 𝜃



Sufficient Statistics

 𝑋𝑖~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜃), 𝑋 = 𝑋1, … , 𝑋𝑛 , 𝑆 = ∑𝑋𝑖

 𝜃 → 𝑋 → 𝑆

 𝜃 → 𝑆 → 𝑋

 Given the number of ones, 𝑋 is independent of 𝜃 since all sequences 

with 𝑆 ones are equally probable, with probability 1/ 𝑛
𝑆

 𝑋𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(𝜃, 1), 𝑋 = 𝑋1, … , 𝑋𝑛 , ത𝑋 = ∑𝑖𝑋𝑖 /𝑛 is a sufficient statistic

 𝑋𝑖~𝑈𝑛𝑖𝑓𝑜𝑟𝑚[0, 𝜃], 𝑋 = 𝑋1, … , 𝑋𝑛 , 𝑀 = max𝑋𝑖 is a sufficient statistic

 Minimal sufficient statistic: a SS that is a function of every other SS



Fano’s inequality

 We know a random variable 𝑌 and want to estimate 𝑋

 How is the probability of error affected by 𝐻(𝑋|𝑌)?

 Best case: 𝑋 is a function of 𝑌: 𝐻 𝑋 𝑌 = 0

 Worst case: X and Y are independent: 𝐻 𝑋 𝑌 = 𝑋

 Let the estimate be 𝑋 = 𝑔(𝑌), a (possibly random) function of 𝑌

 𝑃𝑒 = Pr( 𝑋 ≠ 𝑋), 𝑀: number of possible values of 𝑋

 Fano’s inequality: 𝐻 𝑃𝑒 + 𝑃𝑒 log𝑀 ≥ 𝐻(𝑋|𝑌) and 

𝑃𝑒 ≥
𝐻 𝑋 𝑌 − 1

log𝑀



Fano’s inequality

 Special case: 𝑃𝑒 = 0 ⇒ 𝐻 𝑋 𝑌 = 0

 𝐼 𝑋; 𝑌 = 𝐻 𝑋 − 𝐻 𝑋 𝑌 = 𝐻 𝑌 − 𝐻(𝑌|𝑋)

 𝐻 𝑌 ≥ 𝐻(𝑋)

 On average, how many pairwise comparisons do we need to sort a 
list of size 𝑛

 𝑌: the results of pairwise comparisons

 𝑀: average number of comparisons

 We need to identify one permutation among 𝑛!

 𝑀 ≥ 𝐻 𝑌 ≥ 𝐻 𝑋 = log𝑛! ≃ 𝑛 log𝑛

 Independent of how we choose items to compare



Entropy rate

 Consider the sequence:

 000000011110000001111111110000011111110000001111

 What is the entropy per symbol?

 𝑝0 ≃ 𝑝1 ≃
1

2
⇒ 𝐻 ≃ 1 𝑏𝑖𝑡𝑠

 We are ignoring the dependence between symbols

 Probability distribution for the next symbol depends on the previous symbol

 𝑃 𝑋𝑖 = 1 𝑋𝑖−1 = 1 = 0.9

 𝑃 𝑋𝑖 = 0 𝑋𝑖−1 = 0 = 0.9

 This is called a Markov chain

 What is the entropy rate ℎ, amount of information in each symbol?



Entropy Rate of Markov Chains

 What is the entropy rate of a two state Markov chain?

 ℎ = 𝐻 𝑋𝑖 𝑋𝑖−1 = ∑Pr 𝑋𝑖−1 = 𝑥𝑖−1 𝐻(𝑋𝑖|𝑋𝑖−1 = 𝑥𝑖−1)

 Example: two-state Markov chain

 𝐻 𝑋𝑖 𝑋𝑖−1 = 0 = 𝐻(𝛼)

 𝐻 𝑋𝑖 𝑋𝑖−1 = 1 = 𝐻(𝛽)

 Pr 𝑋𝑖−1 = 0 =
𝛽

𝛼+𝛽

 Pr 𝑋𝑖−1 = 1 =
𝛼

𝛼+𝛽

 ℎ =
𝛼

𝛼+𝛽
𝐻 𝛼 +

𝛽

𝛼+𝛽
𝐻 𝛽

Credit: Elements of Inf Theory, Cover and Thomas



Entropy rate

 Markov chains can have memory larger than 1 symbol

 Some processes, such as English text can only be approximated as a Markov 
chain

 From Shannon’s original paper:

 0th order: XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGXYD 
QPAAMKBZAACIBZLHJQD

 1st order: OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI ALHENHTTPA OOBTTVA 
NAH BRL

 4th order: THE GENERATED JOB PROVIDUAL BETTER TRAND THE DISPLAYED CODE, 
ABOVERY UPONDULTS WELL THE CODERST IN THESTICAL IT DO HOCK BOTHE MERG.

 2nd order word model: THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT 
THE CHARACTER OF THIS POINT IS THEREFORE ANOTHER METHOD FOR THE LETTERS THAT 
THE TIME OF WHO EVER TOLD THE PROBLEM FOR AN UNEXPECTED

 0 order entropy = log 27 = 4.76 bits

 4th order entropy = 2.8 bits



Thank you
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