
Decomposing Permutations via Cost-Constrained
Transpositions

Farzad Farnoud (Hassanzadeh)
Department of Electrical and
Computer Engineering

University of Illinois at Urbana-Champaign
Email: hassanz1@uiuc.edu

Olgica Milenkovic
Department of Electrical and
Computer Engineering

University of Illinois at Urbana-Champaign
Email: milenkov@uiuc.edu

Abstract—We consider the problem of finding the minimum
cost transposition decomposition of a permutation. In this frame-
work, arbitrary non-negative costs are assigned to individual
transpositions and the task at hand is to devise polynomial-time,
constant-approximation decomposition algorithms. We describe a
polynomial-time algorithm based on specialized search strategies
that constructs the optimal decomposition of individual transpo-
sitions. The analysis of the optimality of decompositions of single
transpositions uses graphical models and Menger’s theorem. We
also present a dynamic programing algorithms that finds the
minimum cost, minimum length decomposition of a cycle and
show that this decomposition represents a 4-approximation of
the optimal solution. The results presented for individual cycles
extend to general permutations.

I. INTRODUCTION
Permutations are arrangements or orderings of elements,

frequently used to describe processes and phenomena in
mathematics, computer science, communication theory and
bioinformatics [1]–[4].
In order to generate an arbitrary permutation, it suffices to

apply a sequence of transpositions - swaps of two elements
- to the identity permutation. The sequence of swaps can be
reversed in order to recover the identity permutation from the
starting permutation. This process is referred to as sorting
by transpositions, while the inverse process is known as
decomposition.
It is straightforward to show that the number of transposi-

tions needed to sort a permutation is the difference of the
size of the permutation and the number of cycles formed
by the elements of the permutation. We are interested in a
related, yet substantially more difficult question: assuming that
each transposition has an arbitrary non-negative cost, find the
minimum sorting cost and the sequence of transpositions used
in this sorting. To the best of the authors’ knowledge, the
complexity of this problem is not known. In a companion
paper [5] we showed that large families of cost functions –
such as costs based on metric-paths – have polynomial-time
exact decomposition algorithms. In this work, we devise al-
gorithms for approximating the minimum decomposition cost
for arbitrary non-negative cost functions. The approximation
constant does not exceed four.
Our investigation is motivated by three different applica-

tions. The first application pertains to sorting of genomic

sequences, while the second application is related to a gen-
eralization of the notion of a trapdoor channel [6]. The third
application is in the area of coding for storage devices [7].
The paper is organized as follows: Section II introduces

the relevant definitions and terminology. Section III is de-
voted to the study of optimal decomposition algorithms for
individual transpositions, while Section IV describes constant
approximation algorithm for optimizing the cost of a cycle. In
Section V, we present a decomposition algorithm for arbitrary
permutations. In the discussions to follow, some proofs are
omitted for brevity but are presented in the longer arXiv
version of this paper [8].

II. NOTATION AND DEFINITIONS

A permutation π of [n] := {1, 2, · · · , n} is a bijection from
[n] to itself. The functional digraph of a function f : [n] → [n],
denoted by G (f), is a directed graph with vertex set [n] and
an edge from i to f (i) for each i ∈ [n]. For a permutation
π of [n], G (π) is a collection of disjoint cycles since the
in-degree and out-degree of each vertex is exactly one. The
cycles of a permutation are the cycles of its functional digraph.
Often, we do not make a distinction between a permutation
with at most one cycle with length larger than one and its
longest cycle. In this sense, the composition of individual
cycles is well defined. Each cycle σ can be written as a
k−tuple (a1a2 · · ·ak), where k is the length of the cycle and
ai+1 = σ (ai). The cycle representation of a permutation is
the list of its cycles (Figure 1a). For each cycle of length k,
the indices are evaluated modulo k, so that ak+1 equals a1.
A cycle of length two is called a transposition. A transpo-

sition decomposition (or simply a decomposition) τ of length
m of a permutation π is a sequence tm · · · t1 of transpositions
ti whose product (i.e., composition, from right to left) is π.
Alternatively, a sorting s of a permutation π is a sequence of
transpositions that transform π into ı, where ı denotes the
identity permutation. In other words, sπ = ı. Note that a
decomposition in reverse order equals a sorting.
An embedding is a drawing of a graph in which no two

edges cross. An embedding of G (π) can be obtained by
placing vertices of each of the disjoint cycles on disjoint
circles. We use G (π) to refer to the embedding of the

2011 IEEE International Symposium on Information Theory Proceedings

978-1-4577-0595-3/11/$26.00 ©2011 IEEE 2095

1

23

4

5

1

23

4

5

(a) (b)

Figure 1: (a) The digraph G (π) of the permutation π =
(123)(45). (b) The graph T (τ), for the decomposition τ =
(13)(12)(45) of π. Edges of G (π) and T (τ) are represented
with dashed and solid lines, respectively.

functional digraph of π on circles, as well as the functional
digraph of π.
Let T (τ) be a graph with vertex set [n] and edges (aibi)

for each transposition ti = (aibi) of τ . The drawing of T (τ)
with the same vertex set as G (π) is also denoted by T (τ)
(Figure 1b). In the derivations to follow, we use the words
transposition and edge interchangeably.
We are concerned with the following problem. One is given

a non-negative cost function ϕ on the set of transpositions.
The cost of a decomposition is defined as the sum of the
costs of its transpositions. The task is to find an efficient
algorithm for generating the Minimum Cost Transposition
Decomposition (MCD) of a permutation π. The cost of the
MCD of a permutation π under the cost function ϕ is denoted
by Mϕ (π). If there is no ambiguity, the subscript is omitted.
For a non-negative cost function ϕ, let K (ϕ) be the

undirected complete graph with vertex set [n] in which the
cost of each edge (ab) equals ϕ (a, b). The cost of a graph
G ⊆ K (ϕ) is the sum of the costs of its edges,

cost (G) =
∑

(ab)∈G

ϕ (a, b) .

The shortest path, i.e., the path with minimum cost, between
i and j in K (ϕ) is denoted by p∗ (i, j).
The predecessor of a in G (π) is the unique element x such

that (xa) ∈ G (π), i.e., π(x) = a. Applying a transposition
(ab) to a permutation π is equivalent to exchanging the
predecessors of a and b in G (π). Consider the permutation
π, where π (c) = a and π (d) = b, for a, b, c, d ∈ [n]. Let
π′ = (ab)π. In π′, the predecessor of a and b are exchanged,
so π′ (d) = a and π′ (c) = b. We define a generalization of
the notion of a transposition, termed h-transposition, where
the predecessor of a can be changed independently of the
predecessor of b. Let π′′ = (c, (a → b))π where (c, (a → b))
represents an h-transposition. The h-transposition takes c, the
predecessor of a, to b without modifying the predecessor of
b. That is, in π′′ we have π′′ (c) = π′′ (d) = b, i.e., b has two
predecessors, and a has no predecessor. Note that π′ is no
longer a bijection, but a mapping in which several elements
may be mapped to one element. A transposition represents a
pair of h-transpositions. For example,

(ab)π =
(

π−1 (a) , (a → b)
) (

π−1 (b) , (b → a)
)

π.

An h-decomposition h of a permutation π is a sequence of
h-transpositions such that hı = π. The cost assigned to an
h-transposition (c, (a → b)), where c is a predecessor of a, is
one half of the cost of the corresponding transposition (a, b).
Note that the cost of (c, (a → b)) does not depend on c.
For a permutation π and a transposition (ab), it can be easily

verified that (ab)π consist of one more (or one less) cycle than
π if and only if a and b are in the same cycle (in different cy-
cles). Since the identity permutation has n cycles, a Minimum
Length Transposition Decomposition (MLD) of π has length
n−%, where % denotes the number of cycles in π. The minimum
cost of an MLD of π, with respect to cost function ϕ, is
denoted by Lϕ (π). For example, (132) (45) = (45) (23) (12)
is decomposed into three transpositions. In particular, if π is
a single cycle, then the MLD of the cycle has length n−1. A
given cycle of length k has kk−2 MLDs [9]. An MCD is not
necessarily an MLD, as illustrated by the following example.

Example 1. Consider the cycle σ = (1 · · · 5) with ϕ (i, j) = 3,
for |i− j| = 1, and ϕ (i, j) = 1 otherwise. It is easy to verify
that the decomposition (14)(13)(35)(24)(14)(13) is an MCD
of σ with cost six, i.e., M (σ) = 6. However, as we shall see
later, the cost of a minimum cost MLD is eight, i.e., L (σ) = 8.
One such MLD is (14)(23)(13)(45) [10].

III. OPTIMIZING THE COST OF INDIVIDUAL
TRANSPOSITIONS

Let (ab) be a transposition in a decomposition τ . It can
be shown that (ab) has no decompositions of length two
and the only decomposition of length one is (ab) itself. It
is, then, straightforward to see that the shortest non-trivial
decompositions of (ab) must be of the form

(ab) = (ac) (bc) (ac) , (1)

where c ∈ [n] and c %= a, b, up to reversing the roles of a and
b.
If ϕ (ab) > 2ϕ (ac) + ϕ (bc) , then replacing (ab) in τ by

(ac) (bc) (ac) reduces the cost associated with τ . Thus, the
first step of our decomposition algorithm is to find the optimal
cost of each transposition. It is straightforward to develop
an algorithm for finding minimum cost decompositions of
transpositions that can be obtained by successive substitutions
of form (1). One such algorithm – Alg. 1 – performs a simple
search on the ordered set of transpositions in order to check
if their product, of the form (1), yields a decomposition of
lower cost for some transposition. It then updates the costs of
transpositions and performs a new search for decompositions
of length three that may reduce the cost of some transposition.
The input to Alg. 1 is an ordered list Ω of transpositions and

their costs. Each row of Ω corresponds to one transposition and
is of the form [(ab) |ϕ (a, b)]. Sorting of Ω means reordering
its rows so that transpositions are sorted in increasing order
of their costs. The output of the algorithm is a list with the
same format, but with minimized costs for each transposition.

Lemma 2. Alg. 1 optimizes the costs ϕ of all transpositions
with respect to the triple transposition decomposition (1).

2096

a · · ·
x1

· · ·
y1

b· · ·· · ·

(a) The edge (x1y1) is the only cut-edge

a · · ·
x1

· · ·
y1

· · ·
x2

· · ·
y2

· · · b· · ·

(b) Edges (x1y1) and (x2y2) are the cut-edges

Figure 2: Illustration for the proof of Theorem 3.

Algorithm 1 OPTIMIZE-TRANSPOSITION-COSTS(Ω)
1: Input: Ω (the list of transpositions and their cost)
2: Sort Ω
3: for i ← 2 : |Ω| do
4: (a1b1) ← Ω(i)
5: φ1 ← ϕ(a1, b1)
6: for j = 1 : i− 1 do
7: (a2b2) ← Ω(j)
8: φ2 ← ϕ(a2, b2)
9: if {a1b1} ∩ {a2b2} %= ∅ then
10: acom ← {a1, b1} ∩ {a2, b2}
11: {a3, b3} ← {a1, a2, b1, b2}− {acom}
12: if φ1 + 2φ2 < ϕ(a3, b3) then
13: update ϕ(a3, b3) in Ω

14: Sort Ω

Since transposition costs are arbitrary non-negative values,
it is not clear that the minimum cost decomposition of a
transposition is necessarily generated by Alg. 1. This algorithm
only guarantees that one can identify the optimal sequence
of consecutive replacements of transpositions by triples of
transpositions. Hence, the minimum cost of a transposition
(ab) may be smaller than ϕ∗(a, b), the cost obtained via Alg. 1.
Fortunately, this is not the case, as shown in the following
theorem.

Theorem 3. Alg. 1 produces the minimum cost decompositions
of all transpositions.

Proof: Let M represent the multigraph of a decomposi-
tion for a transposition (ab), having vertices in [n] and edges
corresponding to the transpositions used in the decomposition.
We will show that the multigraph M cannot have more than
one a,b-cut edge, i.e., one edge whose removal disconnects
the vertices a and b. If M has no a,b-cut edge, then there
exist at least two edge-disjoint paths between a and b in M .
This claim follows by invoking Menger’s theorem which states
that the minimum number of edges one needs to delete from a
graph G to disconnect two given vertices is also the maximum
number of pairwise edge-disjoint paths between those vertices.
This theorem holds for multigraphs as well [11]. As shown
below, the costs of the paths can be combined, leading to a
cost of the form induced by a transposition decomposition
optimized via (1). The case when the multigraph has exactly
one a,b-cut edge, can be reduced to the case of no a,b-cut edge.
First, we explain how an a,b-cut edge imposes a certain

structure on the decomposition of (ab). It can be easily shown
that in the multigraph of any decomposition of (ab), there
exists a path between a and b. Consider the decomposition
tmtm−1 · · · ti · · · t1 of (ab) and suppose that ti = (x1y1) is
an a,b-cut edge as shown in Figure 2a. For 1 ≤ j ≤ m, let
πj = tj · · · t1. Since there exists a path between a and b,
there also exists a path between a and x1 that does not use
the edge (x1y1). Thus, in M − (x1y1), a and x1 are in the
same “component”. Denote this component by B1. Similarly, a
component, denoted by B2, must contain both b and y1. Since
there is no transposition in πi−1 with endpoints in both B1

and B2, there is no element z ∈ B1 such that πi−1 (z) ∈ B2.
Similarly, there is no element z ∈ B2 such that πi−1 (z) ∈ B1.
This implies that πi−1 (a) ∈ B1 and πi−1 (b) ∈ B2. Since
(x1y1) is the only edge connecting B1 and B2, we must have

πi−1(a) = x1, πi−1(b) = y1,

πi(a) = y1, πi(b) = x1.

Also, for all j ≥ i, we must have πj(b) ∈ B1.
Now suppose there are at least two a,b-cut edges in M

as shown in Figure 2b. Let the decomposition of (ab) be
tm · · · tl · · · ti · · · t1, where ti = (x1y1) and tl = (x2y2) are
a,b-cut edges, for some i < l. Define B1, B2, and B3 to
be the components containing a, y1, and y2, respectively, in
M − (x1y1) − (x2y2). By the same reasoning as above we
must have

πl−1 (a) = x2, πl−1 (b) = y2.

However, this cannot be true since for all j ≥ i, we have
πj(b) ∈ B1 and thus πl−1(b) %= y2 ∈ B3. This contradiction
shows that M cannot contain more than one a,b-cut edge.
Consider the case when there is no a,b-cut edge in M . In

this case, based on Menger’s theorem, there must exist at least
two pairwise edge disjoint paths between a and b. The cost of
one of these paths has to be less than or equal to the cost of
the other. Refer to this path as the minimum path. Clearly the
cost of the decomposition of (ab) described by M is greater
than or equal to twice the cost of the minimum path. Let the
edges of the minimum path be (az1)(z1z2)...(zm−1zm)(zmb)
for some integer m. The cost of (ab) is greater than or equal
to
2ϕ∗(a, z1) + 2ϕ∗(z1, z2) + · · ·+ 2ϕ∗(zm−1zm) + 2ϕ∗(zm, b) ≥

ϕ∗(a, z1) + 2ϕ∗(z1, z2) + ...+ 2ϕ∗(zm−1zm) + 2ϕ∗(zm, b) ≥

ϕ∗(a, z2) + 2ϕ∗(z2, z3) + ...+ 2ϕ∗(zm, b) ≥

· · ·≥ ϕ∗(a, zm) + 2ϕ∗(zm, b) ≥ ϕ∗(a, b),

2097

and the cost of the decomposition associated with M cannot
be smaller than the cost of the optimal decomposition pro-
duced by Alg. 1. Next, consider the case when there is one
a,b-cut edge in M . In this case, we distinguish two scenarios:
when x1 = a, and when x1 %= a. In the former case, the
transposition (ay1) plays the role of the transposition (az1)
and the remaining transpositions used in the decomposition lie
in the graphM −(ay1). Since M −(ay1) has no a,b-cut edge,
continuing with line two of (6) proves that the cost of the
decomposition associated with M cannot be smaller than
ϕ∗(a, b). The latter case can be handled similarly.
It can be shown that the complexity of Alg. 1 equals O(n4).
We find the following lemma useful in Section IV.

Lemma 4. The minimum cost of a transposition is at most
twice the cost of the shortest path between its elements in
K (ϕ). That is, ϕ∗ (a, b) ≤ 2 cost (p∗ (a, b)) .

Proof: Suppose that p∗(a, b) = c0c1 · · · cmcm+1 where
a = c0 and b = cm+1. It is easy to see that

(ab) = (c0c1)(c1c2) · · · (cmcm+1)(cmcm−1) · · · (c1c0)· (2)

So the right-hand side of (2) is a decomposition of (ab). The
cost of this decomposition is

2
m
∑

j=0

ϕ (cj , cj+1)− ϕ (cm, cm+1) ≤ 2
m
∑

j=0

ϕ (cj, cj+1)

and since the right-hand side is equal to 2 cost (p∗ (a, b)), the
proof is complete.

IV. OPTIMIZING THE COST OF CYCLES
We consider next the cost optimization problem over single

cycles. First, we find the minimum cost MLD via a dynamic
programming algorithm. The minimum cost MLD is obtained
with respect to the optimized cost function ϕ∗ of the previous
section.
The results in this section apply to any cycle σ. However

for clarity of presentation, and without loss of generality, we
consider the cycle σ = (12 · · · k).

A. Minimum Cost MLDs
Recall that the vertices of G (σ) are placed on a circle.

Lemma 5. For an MLD τ = t1 · · · tk−1 of σ, T (τ) is a tree.
Furthermore, T (τ)∪G (σ) is planar. That is, for ti = (a1a2),
where a1 < a2 and tj = (b1b2), where b1 < b2, if a1 < b1 <
a2 then a1 < b2 < a2.

The following lemma, proved in our companion paper [5],
establishes a partial converse to the previous lemma.

Lemma 6. For a cycle σ and a spanning tree T over the
vertices {1, 2, · · · , k}, for which G (σ) ∪ T is planar, there
exists at least one MLD τ of σ such that T = T (τ).

For related ideas regarding permutation decompositions and
graphical structures, the interested reader is referred to [12].
Since any MLD of a cycle can be represented by a tree that

is planar on the circle, the search for an MLD of minimum cost

only needs to be performed over the set of planar trees. This
search can be performed using a dynamic program, outlined in
Alg. 2. Lemma 7 establishes that Alg. 2 produces a minimum
cost MLD.

Algorithm 2 MIN-COST-MLD
1: Input: Optimized transposition cost function Φ∗, where

Φ∗
i,j = ϕ

∗(i, j) (Output of Alg. 1)
2: C(i, j) ← ∞ for i, j ∈ [k]
3: C (i, i) ← 0 for i ∈ [k]
4: C (i, i+ 1) ← ϕ∗ (i, i+ 1) for i ∈ [k]
5: for l = 2 · · · k − 1 do
6: for i = 1 · · · k − l do
7: j ← i+ l
8: for i ≤ s < r ≤ j do
9: A ← C(i, s)+C(s+1, r)+C(r, j)+ϕ∗(i, r)
10: if A < C(i, j) then
11: C(i, j) ← A

Lemma 7. The output cost of Alg. (2) C (1, k), equals L (σ).

Proof: The algorithm finds the minimum cost MLD of
(1 · · · k) by first finding the minimum cost of MLDs of shorter
cycles of the form (i · · · j), where 1 ≤ i < j ≤ k. We look at
the computations performed in the algorithm from a top-down
point of view.
Let CT (i, j) be the cost of the decomposition of the cycle

σi,j = (i · · · j), using edges of T [{i, · · · , j}] where T is
an arbitrary planar spanning tree over the vertices {1, · · · , k}
arranged on a circle. For a fixed T , let

r = max {u| (1u) ∈ T } .

Since T is a tree, T − (1r) has two components. These two
components have vertex sets {1, · · · , s} and {s+ 1, · · · , k},
for some s. It is easy to see that

(1 · · · k) = (s+ 1 · · · k 1) (1 · · · s) . (3)

We may write

(i · · · j) = (s+ 1 · · · r) (ir) (r · · · j) (i · · · s) (4)

where i ≤ s < r ≤ j. Thus

CT (i, j) = CT (s+ 1, r) + ϕ∗ (i, r) + CT (r, j) + CT (i, s) .

Define C (i, j) = CT∗ (i, j), where T ∗ = argminT CT (i, j)
denotes a tree that minimizes the cost of the decomposition
of (i · · · j). Then, we have

C (i, j) = C (s∗ + 1, r∗) + ϕ∗ (i, r∗) + C (r∗, j) + C (i, s∗) ,
(5)

where s∗ and r∗ are the values that minimize CT (i, j) under
the constraint 1 ≤ i ≤ s < r ≤ j. Since the cost of each cycle
can be computed from the cost of shorter cycles C (i, j) can
be obtained recursively, with initialization

C (i, i+ 1) = ϕ∗ (i, i+ 1) . (6)

2098

The algorithm searches over s and r and computes C (1, k)
using (5) and (6). Although these formulas are written in a
recursive form, Alg. 2 is written as a dynamic program. The
algorithm first computes C (i, j) for small values of i and j,
and then finds the cost of longer cycles. That is, for each
2 ≤ l ≤ k − 1 in increasing order, C (i, i+ l) is computed
by choosing its optimal decomposition in terms of costs of
smaller cycles.
It can be shown that the complexity of Alg. 2 is O

(

k4
)

.

B. Constant-factor approximation for cost of MCD
For the cycle σ = (12 · · · k) and 1 ≤ j ≤ k consider the

decomposition

(j + 1 j + 2) (j + 2 j + 3) · · ·

(k − 1 k) (k1) (12) (23) · · · (j − 1 j) . (7)

The cost of this decomposition equals
∑

i∈σ ϕ
∗ (i,σ (i)) −

ϕ∗ (j,σ (j)) .
To minimize the cost of the decomposition, we choose j

such that the transpositions (j j + 1) has maximum cost. That
is, we let j = j∗ in (7) where j∗ = argmaxj∈σ ϕ

∗ (j,σ (j)) .
This decomposition is termed the Simple Transposition De-
composition (STD) of σ and its cost is denoted by S (σ).

Theorem 8. For a cycle σ M (σ) ≤ L (σ) ≤ S (σ) ≤
4M (σ) .

Proof: Clearly, M (σ) ≤ L (σ). It is easy to see that the
STD is itself an MLD and, thus, L (σ) ≤ S (σ). For S (σ),
we have

S (σ) =
∑

i∈σ

ϕ∗ (i,σ (i))− ϕ∗ (j∗,σ (j∗))

≤
∑

i∈σ

ϕ∗ (i,σ (i)) ≤ 2
∑

i∈σ

cost (p∗ (i,σ (i)))

where the last inequality follows from Lemma 4. To
complete the proof, we need to show that M (σ) ≥
1
2

∑

i cost (p
∗ (i,σ (i))). Since this result is of independent

importance we state it in Lemma 9.
Recall from Section II that

(

σ−1 (a) , (a → b)
) (

σ−1 (b) , (b → a)
)

σ = (ab)σ

and that the cost of each h-transposition is half the cost of the
corresponding transposition.

Lemma 9. It holds that M (σ) ≥ 1
2

∑

i cost (p
∗ (i,σ (i))).

Proof: Any decomposition can be written as an h-
decomposition with the same cost by breaking each transpo-
sition into two h-transpositions. Thus, the minimum cost of a
decomposition,M(σ), is at least as large as the minimum cost
of an h-decomposition. The minimum cost h-decomposition
uses the shortest path p∗ (i,σ (i)) between i and σ (i). In this
case, i becomes the predecessor of σ (i) through the following
sequence of h-transpositions:

(i, (vm → σ (i))) · · · (i, (v1 → v2)) (i, (i → v1)) ,

where p∗ (i,σ (i)) = iv1v2 · · · vmσ (i) is the shortest path
between i and σ (i). This h-decomposition has cost

1

2

∑

i

cost (p∗ (i,σ (i))) ,

which completes the proof.

V. OPTIMIZING THE COST OF PERMUTATIONS
Most of the results in the previous section generalize to

permutations with multiple cycles without difficulty.
Let π be a permutation, with cycle decomposition

σ1σ2 · · ·σ#. A decomposition of π with minimum number of
transpositions is the product of MLDs of individual cycles
σi. Thus, the minimum cost MLD of π equals L (π) =
∑#

t=1 L (σt) . Furthermore, the STD of π is the product of
the STDs of individual cycles σi.

Theorem 10. Consider a permutation π with cycle decompo-
sition σ1σ2 · · ·σ# and cost function ϕ. The following claims
hold.
1) S (π) ≤ 2

∑

i cost (p
∗ (i,π (i))) .

2) M (π) ≥ 1
2

∑

i cost (p
∗ (i,π (i))) .

3) L (π) ≤ S (π) ≤ 4M (π) .

Theorem 10 indicates that a minimum cost MLD represents
a good approximation for an MCD, independent of the choice
of the cost function. This holds true only if the costs of
individual transpositions are first optimized using Alg. 1. Note
that in this case, the decomposition of a single transposition
itself can be of length greater than or equal to three.
Acknowledgement. The authors gratefully acknowledge dis-
cussions with Chandra Chekuri and Navin Kashyap. This work
was funded by the NSF grants NSF CCF 08-21910 and NSF
CCF 08-09895.

REFERENCES
[1] I. P. Goulden and D. M. Jackson, Combinatorial enumeration. Dover

Pubns, 2004.
[2] J. H. van Lint and R. M. Wilson, A course in combinatorics. Cambridge

Univ Pr, 2001.
[3] F. R. K. Chung, “An algebraic approach to switching networks.”
[4] M. Hofri, Analysis of algorithms: Computational methods and mathe-

matical tools. Oxford University Press Oxford, UK, 1995.
[5] F. Farnoud, C.-Y. Chen, O. Milenkovic, and N. Kashyap, “A graphical

model for computing the minimum cost transposition distance,” in
Information Theory Workshop (ITW), 2010 IEEE, 30 2010-sept. 3 2010,
pp. 1 –5.

[6] H. Permuter, P. Cuff, B. V. Roy, and T. Weissman, “Capacity of the
trapdoor channel with feedback.” IEEE Transactions on Information
Theory, vol. 54, no. 7, pp. 3150 – 3165, 2008.

[7] A. Barg and A. Mazumdar, “Codes in permutations and error correc-
tion for rank modulation,” Information Theory, IEEE Transactions on,
vol. 56, no. 7, pp. 3158 –3165, july 2010.

[8] F. Farnoud and O. Milenkovic, “Sorting of permutations by cost-
constrained transpositions,” Arxiv preprint arXiv:1007.4236, 2010.

[9] N. Meier and J. Tappe, “Ein Neuer Beweis der Nakayama-Vermutung
Uber die Blockstruktur Symmetrischer Gruppen,” Bull. London
Math. Soc., vol. 8, no. 1, pp. 34–37, 1976. [Online]. Available:
http://blms.oxfordjournals.org

[10] N. Kashyap, Personal Communication, 2010.
[11] D. B. West, Combinatorial Mathematics. Preliminary version, 2009.
[12] I. Goulden, “Tree-like properties of cycle factorizations,” Journal of

Combinatorial Theory, Series A, vol. 98, no. 1, pp. 106 – 117, Apr.
2002.

2099

