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Abstract—We study random string-duplication systems, called
Pólya string models, motivated by certain random mutation
processes in the genome of living organisms. Unlike previous
works that study the combinatorial capacity of string-duplication
systems, or peripheral properties such as symbol frequency,
this work provides exact capacity or bounds on it, for several
probabilistic models. In particular, we give the exact capacity of
the random tandem-duplication system, and the end-duplication
system, and bound the capacity of the complement tandem-
duplication system. Interesting connections are drawn between
the former and the beta distribution common to population
genetics, as well as between the latter system and signatures
of random permutations.

I. INTRODUCTION

Several mutation processes are known, which affect the
genetic information stored in the DNA. Among these are
transposon-driven repeats [5] and tandem repeats which are
believed to be caused by slipped-strand mispairings [9]. In
essence, these mutation processes take a substring of the DNA
and insert a copy of it somewhere else (in the former case),
or next to the original copy (in the latter). In human DNA,
it is known that its majority consists of repeated sequences
[5]. Moreover, certain repeats cause important phenomena
such as chromosome fragility, expansion diseases, silencing
genes [10], and rapid morphological variation [3].

A formal mathematical model for studying these kinds of
mutation processes is the notion of string-duplication systems.
In such systems, a seed string (or strings) evolves over time
by successive applications of mutating functions. For example,
functions taking a substring of a string and copying it next to
itself model mutation by tandem duplication. These string-
duplication systems were studied in the context of formal
languages (e.g., [6]) in an effort to place the resulting sets
of mutated sequences within Chomsky’s hierarchy of formal
languages, as well as derive closure properties.

Another approach, from a coding-theoretic perspective, at-
tempted to find properties of string-duplication systems such
as capacity and diversity [1], [4]. Using various techniques,
mainly borrowed from constrained-coding theory, bounds were
derived on the number of strings that are attainable via the
studied mutation processes, given the original seed string.
These were used to obtain either exact expressions or bounds
on the combinatorial capacity of the string-duplication sys-
tems. The main drawback of this approach, however, is that
in the expression for the combinatorial capacity, all attainable
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strings are considered equally likely. Clearly, there is a gap
between this model and real-world mutation processes.

To reduce this gap, a probabilistic model was studied in [2].
This model is not concerned with which strings are possible,
but rather with which strings are probable. With appropriate
distributions applied to the choice of the mutated point, its
length, and its final position, we obtain an induced distribution
on resulting strings. However, [2] was not able to provide any
exact capacity calculation nor bounds, and managed to study
only peripheral properties of the resulting string distributions,
namely the frequencies of symbols and substrings.

Thus, the goal of this paper is to find the exact capacity
of probabilistic string-duplication systems, or bound it. As we
later see, even for very modest parameters this problem is
extremely challenging. The main contributions of this paper
are an exact expression for the tandem-duplication system and
the end-duplication system, as well as bounds on the capacity
of the complement-tandem duplication system. In all cases we
study duplication of length 1 only.

An important tool, widely used in the study of genetic drift
in population genetics, is a Pólya urn model. It consists of an
urn with balls of two different colors. In each step a ball is
randomly chosen and returned to the urn along with k new
balls of the same color [8]. There are many extensions of this
model, where after each draw a set of balls, whose number
and composition depends on the color of the drawn ball, are
put into the urn. However, in these models there is no structure
on the balls in the urn and only the number of balls of each
color matters. Thus, these models fail to apply to strings.

We therefore suggest extensions of the Pólya urn models
to what we call Pólya string models, in which the balls form
a string, which may be circular or linear, similar to bases of
a DNA molecule. The draw in this model typically involves
choosing a random position (or equivalently a ball) in this
string where a modification to the string–the mutation–occurs.
In this paper, we focus on models in which after the draw, a
sequence of balls is inserted to the string whose composition
and the position it is inserted in depends on the local properties
of the string around the chosen position.

The paper is organized as follows. In Section II we fix our
notation and definitions that are used throughout the paper.
In Section III we calculate the exact capacity of the tandem-
duplication and end-duplication systems. In Section IV we
bound the capacity of the complement tandem-duplication
system. We conclude in Section V by providing some insight
and comparisons with the combinatorial capacity and Pólya
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urn models.

II. PRELIMINARIES

Let Σ = {0, 1} be the binary alphabet. While the results
we present have a greater generality, for the sake of simplicity
of presentation we restrict ourselves to the binary case only.
We use the notation common to formal languages to describe
strings over Σ. The set of length-n strings over Σ is denoted by
Σn. We let Σ∗ denote the set of all finite-length strings over
Σ. The unique empty string is denoted by ε. The set of all
finite-length non-empty strings is denoted by Σ+ = Σ∗ \ {ε}.

Let ω ∈ Σ∗ be a string. We use |ω| to denote the length of
ω. Obviously, |ε| = 0. If ω′ ∈ Σ∗, the concatenation of ω and
ω′ is denoted ωω′. The number of occurrences of a symbol
a ∈ Σ in the string ω is denoted by |ω|a. For a natural number
n ∈ N we use [n] to denote the set [n] = {1, 2, . . . , n}.

The Pólya string model may be quite generally defined.
Intuitively, the model takes a starting string, and in a sequence
of steps, mutates it over time. A formal definition follows:

Definition 1. A Pólya string model is defined by S = (Σ, σ, T),
where Σ is a finite alphabet, S(0) = σ ∈ Σ+ is a seed string,
and T : Σ∗ × N → Σ∗ is a duplication rule. The string model
is the following discrete-time random process: For all i ∈ N we
let Li be a random integer chosen uniformly from [|S(i − 1)|],
i.e., an integer between 1 and the length of the string S(i − 1).
We then set S(i) = T(S(i − 1), Li).

While the definition is given in terms of duplication muta-
tions, it can be naturally extended to other types of mutations
and random sequence editing.

Several rule choices parallel the combinatorial (determinis-
tic) systems studied in [1], and are special cases of the general
stochastic systems studied in [2]. In particular, we define the
tandem duplication rule as

Ttan(ωaω′, i) = ωaaω′,

where ω, ω′ ∈ Σ∗, |ω| = i − 1, and a ∈ Σ. Intuitively,
the tandem duplication rule takes the ith symbol of a given
string and duplicates it next to the original letter. In a similar
fashion we define the end-duplication and complement-tandem
duplication rules as

Tend(ωaω′, i) = ωaω′a, Ttan(ωaω′, i) = ωaaω′,

where ω, ω′ ∈ Σ∗, |ω| = i − 1, a ∈ Σ, and a denotes the
binary complement bit to a. By plugging in the appropriate
duplication rule, we define the Pólya string systems Stan, Send,
and Stan.

Given a Pólya string system S, the set of choices leading
from S(0) to S(n) is denoted by H(n) and is referred to as
the history of the sequence. The capacity of the process S is
defined as

cap(S) = lim sup
n→∞

1
n

H(S(n)),

where H is the entropy function (all logs are base 2),

H(S(n)) = − ∑
ω∈Σ∗

Pr(S(n) = ω) log2 Pr(S(n) = ω).

In a sense, the capacity quantifies the diversity that can be
generated by the process. It also determines the smallest rate
at which each symbol can be compressed. Furthermore, since
H(S(n)|H(n)) = 0,

cap(S) = lim sup
n→∞

1
n

I(S(n);H(n)),

where I denotes mutual information. Thus cap(S) can be
viewed as the capacity the channel that transforms histories
to sequences and can be used to derive rate-distortion results
on estimating the history H(n) using the sequence S(n).

III. TANDEM AND END DUPLICATION

This section is dedicated to the study of the capacity of
tandem and end duplication Pólya string models. In particular,
this highlights the difference between an urn model and a
string model. As we shall see, the capacity differs between
some of the cases.

We start by stating the common points between the Pólya
string models. We fix the binary alphabet Σ = {0, 1}, and a
starting string S(0) = σ ∈ Σ∗. Let us denote |σ|0 = t0 and
|σ|1 = t1.

The random process repeatedly draws a position in uniform
(independently of previous draws) from S(i), i = 0, 1, 2, . . .
and duplicates the bit in that position. Let us record the values
of the chosen bits in each round as ω = b0, b1, b2, . . . . The
end result, after n − t0 − t1 rounds, is a binary string S(n −
t0 − t1) of length n. Let us further denote |ω|0 = k0 and
|ω|1 = k1. Thus, t0 + t1 + k0 + k1 = n.

It is an easy exercise to find that the probability of recording
a specific ω ∈ Σ∗ depends only on t0, t1, k0, and k1, and does
not depend on the order of bits in ω. In particular,

Pr(ω) =
(t0 + t1 − 1)!(t0 + k0 − 1)!(t1 + k1 − 1)!

(t0 − 1)!(t1 − 1)!(n − 1)!
. (1)

We now specialize our treatment depending on the duplica-
tion rule that is used.

Theorem 2. For tandem duplication, cap(Stan) = 0.

Proof: We use a crude counting argument. Consider the
initial string S(0), and denote the number of runs in it by r.
Obviously any tandem duplication operation extends existing
runs and never creates new runs. Thus, it may be viewed as
an action of throwing n − t0 − t1 balls into r bins. The total
number of resulting strings (regardless of probability) is given
exactly by (n−t0−t1+r−1

r−1 ) 6 nr−1. Maximum entropy will be
attained by a uniform distribution over those strings, and even
in that case we get

cap(Stan) 6 lim sup
n→∞

1
n

log nr−1 = 0.

A lower bound of 0 is trivial since we have at least one string
possible of each length n > t0 + t1.

The case of end duplication behaves quite differently.
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Theorem 3. Let S(0) ∈ Σ∗ be a seed string with |S(0)|0 =
t0 and |S(0)|1 = t1. Then the capacity of the end-duplication
Pólya string model with S(0) is given by

cap(Send(S(0))) =
∫ 1

0
β(p; t0, t1)H2(p)dp,

where H2(·) is the binary entropy function, and

β(p; t0, t1) =
(t0 + t1 − 1)!

(t0 − 1)!(t1 − 1)!
pt0−1(1 − p)t1−1,

is the pdf for the Beta(t0, t1) distribution.

Proof: Consider the setting discussed above, in which
we record the drawn bits ω = b0, b1, . . . , bn−1−t0−t1 . In the
end-duplication case, the resulting string S(n − t0 − t1) =
S(0)ω is simply the concatenation of ω to the seed string
S(0). Again, we denote by k0 the number of 0’s in ω, and by
k1 the number of 1’s in ω.

The probability of drawing ω will be denoted by Pr(ω),
whereas, the probability of drawing any ω with k0 0’s will be
denoted by Pr(k0). By our previous discussion, all draws ω
with the same number of 0’s have the same probability, i.e.,

Pr(k0) =

(
k0 + k1

k0

)
Pr(ω).

The capacity is now given by,

cap(Send(S(0)))

= lim sup
n→∞

1
n − t0 − t1

H(S(n − t0 − t1))

= lim sup
n→∞

1
n

n−t0−t1

∑
k0=0

− (Pr(k0) log Pr(ω| |ω|0 = k0)) ,

where in the last equality, Pr(ω| |ω|0 = k0) denotes the
probability of a fixed ω with k0 0’s.

Plugging in the expression from (1) we get

1
n

n−t0−t1

∑
k0=0

− (Pr(k0) log Pr(ω| |ω|0 = k0))

= − 1
n

n−t0−t1

∑
k0=0

Pr(k0) log
(t0 + k0 − 1)!(t1 + k1 − 1)!

(n − 1)!

− 1
n

log
(t0 + t1 − 1)!

(t0 − 1)!(t1 − 1)!
,

and we note the last term is o(1), i.e., it vanishes when n
grows. We also have

(t0 + k0 − 1)!(t1 + k1 − 1)!
(n − 1)!

=
1

n − 1

(
n − 2

t0 + k0 − 1

)−1
.

Thus,

1
n

n−t0−t1

∑
k0=0

− (Pr(k0) log Pr(ω| |ω|0 = k0))

=
1
n

n−t0−t1

∑
k0=0

Pr(k0) log
(

n − 2
t0 + k0 − 1

)
+ o(1).

0
ε

01
1

011
21

0111
321

0101
231

0110
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010
12

0110
312

0100
132

0101
123

Figure 1. The tree of sequences that can be obtained starting from 0 using
the complement tandem-duplication rule for n 6 3. The first line in each node
is the sequence and the second line is its history permutation.

Additionally, it is well known (e.g., see [8, Ch. 3]) that as
n → ∞, we have Pr(k0/n 6 p) →

∫ p
0 β(u; t0, t1)du. Finally,

cap(Send(S(0)))

= lim sup
n→∞

1
n

n−t0−t1

∑
k0=0

Pr(k0) log
(

n − 2
t0 + k0 − 1

)
=

∫ 1

0
β(p)H2(p)dp,

where we also used the well-known approximation for the bi-
nomial coefficient ( n−2

t0+k0−1) = 2nH2(k0/n)+o(n) (e.g., see [7]).

IV. COMPLEMENT TANDEM DUPLICATION

In this section, we consider the complement tandem-
duplication Pólya string model, S = Stan = ({0, 1}, σ, Ttan).
For simplicity, in what follows we assume that S(0) = σ = 0.
Since we only have one choice, the string then becomes
S(1) = 01. As an example, a possible history leading to
S(3) = 0110 is

0 → 01 → 010 → 0110, (2)

where in each step the new symbol is in bold.
A history can be encoded as a permutation of length n,

called its history permutation, as follows: Replace each 0 or 1
with the number of the turn in which they were added to the
sequence. For example, the history given in (2) corresponds
to the history permutation 312:

0 → 01 → 010 → 0110,
ε → 1 → 12 → 312.

Note that since 0 is always in the starting position, we drop
it to obtain a permutation of [n]. It is clear that this provides
us with a bijection between permutations of [n] and a history
resulting in a sequence S(n) = 01s, s ∈ {0, 1}n−1. This
bijection will be useful in what follows.

The tree in Fig. 1 illustrates the history permutations and
the sequences arising from them for n 6 3. Since all histories
are equally likely, all leaves at the same level in the tree are
equally likely. Note however that not all sequences are equally
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likely as multiple histories may lead to the same sequence.
For example, from Fig. 1, it is clear that Pr(S(3) = 0101) =
2 Pr(S(3) = 0100).

The following definitions will be useful. For n ∈ N let
Sn denote the symmetric group of permutations over [n]. The
ith element of S(n), for i ∈ [n + 1], is denoted by Si(n).
Furthermore, the substring sisi+1 · · · sj of a sequence s is
denoted by sj

i . For S(n), this notation becomes Sj
i(n).

For a permutation π ∈ Sn, define the signature s ∈
{0, 1}n−1 of π as

si =

{
0, if si > si+1

1, if si < si+1

for i ∈ [n − 1], i.e., ascents are marked by 1 and descents by
0.

The following theorem is useful in computing the capacity
of the system.
Theorem 4. The probability Pr(S(n) = 01s), s ∈ {0, 1}n−1,
in Stan with S(0) = 0, is the same as the probability of getting
the signature s when choosing a random permutation from Sn.

Proof: Let the set of history permutations that lead to 01s
be denoted by Π01s. Furthermore, let the set of permutations
with signature s ∈ {0, 1}n−1 be denoted by Ψs. We claim that

|Π01s| = |Π10s| = |Ψs|, (3)

for all s ∈ {0, 1}∗. We show this by proving that the sizes
of both sets satisfy the same recursion with the same initial
values. The initial conditions for all recursions are |Π01ε| =
|Π10ε| = |Ψε| = 1, where ε is the empty string.

We start by providing two recursions for |Ψs|. For v ∈
{0, 1}n, let

Tv = {i ∈ [n + 1] : (vi−1 = 1 or i = 1)
and (vi = 0 or i = n + 1)},

Uv = {i ∈ [n + 1] : (vi−1 = 0 or i = 1)
and (vi = 1 or i = n + 1)},

be the set of positions where 1 to 0 and 0 to 1 transitions occur
(except at the boundaries). For example for s = 0011010, we
have Ts = {1, 5, 7} and Us = {3, 6, 8}.

For s ∈ {0, 1}n, we can construct a permutation of n + 1
elements with the signature s recursively by first determining
the position of n + 1. The set of valid positions for n + 1
is precisely the set Ts. Suppose we place n + 1 in position
i ∈ Ts. We now need to construct two permutations with
signatures s1s2 · · · si−2 and sisi+1 · · · sn each with a subset
of [n]. We can choose the set of elements for each of these
two permutations in ( n

i−1) ways. Hence,

|Ψs| = ∑
i∈Ts

(
n

i − 1

) ∣∣∣Ψsi−2
1

∣∣∣ ∣∣∣Ψsn
i+1

∣∣∣ .

Similarly, by deciding where to place 1 (instead of n + 1), we
can show that

|Ψs| = ∑
i∈Us

(
n

i − 1

) ∣∣∣Ψsi−2
1

∣∣∣ ∣∣∣Ψsn
i+1

∣∣∣ .

We now return to Π01s and Π10s. Note that (3) holds
trivially if s is the empty string. Suppose (3) holds for all
s ∈ {0, 1}n−1. Fix s ∈ {0, 1}n and consider the sequence 01s
as the result of the Pólya string model. In the permutations
in Π01s , the set of valid positions for 1 is precisely the set of
positions in Ts. To see this note that in a permutation describ-
ing the history of 01s, the element 1 can only correspond to
the last element in a run of 1s in the string 01s. Specifically,
the element 1 can be placed in position 1 iff s starts with a 0
(since the bold 1 in 01s is the last 1 in a run); 1 can be placed
in position 2 6 i 6 n iff si−1si = 10; and finally, 1 can be
placed in position n + 1 iff sn = 1 (again, the last 1 in a run
of 1s).

Hence, we can construct these permutations recursively by
first determining the position of 1 in them, and

|Π01s| = ∑
i∈Ts

(
n

i − 1

) ∣∣∣Π01si−2
1

∣∣∣ ∣∣∣Π10sn
i+1

∣∣∣
= ∑

i∈Ts

(
n

i − 1

) ∣∣∣Ψsi−2
1

∣∣∣ ∣∣∣Ψsn
i+1

∣∣∣ .

Similarly, for Π10s, s ∈ {0, 1}n, the possible positions for 1
are precisely those in Us as now 1 in the history permutation
should correspond to the last 0 in a run of 0s in the string 10s.
So 1 can be placed in position 1 iff s starts with a 1; it can
be placed in position 2 6 i 6 n iff si−1si = 01; and finally it
can be placed in position n + 1 if sn = 0. We thus have

|Π10s| = ∑
i∈Ts

(
n

i − 1

) ∣∣∣Π10si−2
1

∣∣∣ ∣∣∣Π01sn
i+1

∣∣∣
= ∑

i∈Ts

(
n

i − 1

) ∣∣∣Ψsi−2
1

∣∣∣ ∣∣∣Ψsn
i+1

∣∣∣ .

This completes the proof of (3) for all s ∈ {0, 1}∗.
Define the process S̄ as follows. Suppose we uniformly

and independently choose random reals in [0, 1] denoted by
X1, X2, . . . . Let

S̄i =

{
1, if Xi < Xi+1

0, if Xi > Xi+1
(4)

for i ∈ N. Note that the strings in S evolve by changing
at a random position, but S̄ can be viewed as evolving by
changing at the end, and thus is easier to analyze. The key to
our bounds on the capacity is drawing an equivalence between
these two processes, which follows from Theorem 4: For any
n and s ∈ {0, 1}n−1, we have

Pr(S(n) = 01s) = Pr(S̄n−1
1 = s).

So,

cap(Stan) = lim sup
n→∞

1
n

H(S(n)) = lim sup
n→∞

1
n

H
(

S̄n−1
1

)
= lim sup

n→∞

1
n

n−1

∑
i=1

H
(

S̄i|S̄i−1
1

)
(5)
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Theorem 5. For the complement tandem-duplication Pólya
string model with seed string S(0) = 0, we have

5 log e − 2
6

6 cap(Stan) 6 H2

(
1
3

)
.

Proof: Before proceeding with the proof, we show a
simpler lower bound than the one given in the theorem. For
i ∈ N, since S̄i−1

1 → Xi → Si, i.e., they form a Markov chain,
we have H(S̄i|S̄i−1

1 ) > H(S̄i|Xi). Furthermore, Pr(S̄i =
0|Xi = x) = x. Thus from (5) we find

cap(Stan) > H (S̄i|Xi) =
∫ 1

0
H2(x)dx =

log e
2

> 0.7213.

With the same approach we can prove the lower bound in the
theorem. Note that S̄i−2

1 → Xi−1 → S̄i
i−1. So

H(S̄i|S̄i−1
1 ) > H(S̄i|S̄i−1, Xi−1)

=
∫ 1

0
xh0(x)dx +

∫ 1

0
(1 − x) h1(x)dx,

where h0(x) = H (S̄i|S̄i−1 = 0, Xi−1 = x) and h1(x) =
H (S̄i|S̄i−1 = 1, Xi−1 = x). We have

h0(x) = H2

(
1
x

∫ x

0
ydy

)
= H2

( x
2

)
,

h1(x) = H2

(
1

1 − x

∫ 1

x
(1 − y) dy

)
= H2

(
1 − x

2

)
.

Hence,

H(S̄i|S̄i−1
1 ) =

∫ 1

0
xH2

( x
2

)
dx+∫ 1

0
(1 − x) H2

(
1 − x

2

)
dx =

5 log e − 2
6

> 0.8689.

Now we turn to proving the upper bound. Note that

cap(Stan) 6 lim
n→∞

H(S̄n|S̄n−1) = H(S̄2|S̄1)

=
1
2
(H(S̄2|S̄1 = 0) + H(S̄2|S̄1 = 1))

=
1
2
· 2 · H2

(
1
3

)
6 0.9183,

since by integrating over the values of X3
1 , we find

Pr (S̄2 = 0|S̄1 = 0) =

∫ 1
0 dx1

∫ x1
0 dx2

∫ x2
0 dx3∫ 1

0 dx1
∫ x1

0 dx2
=

1/6
1/2

=
1
3

as well as Pr (S̄2 = 1|S̄1 = 1) = 1
3 .

Both methods used in the proof of the preceding theorem
can be extended to obtain better bounds. We do this for the
upper bound. We have

cap(Stan) 6 lim
n

H(S̄n|S̄n−2, S̄n−1) = H(S̄4|S̄2, S̄3)

Let Pijk = Pr(S̄2 = i, S̄3 = j, S̄4 = k). By integration, we
find (P000, P001, . . . , P111) =

1
24 (1, 3, 5, 3, 3, 5, 3, 1). Hence

H(S̄4|S̄2 = 0, S̄3 = 0) = H(S̄4|S̄2 = 1, S̄3 = 1) = H2(2/8),
H(S̄4|S̄2 = 0, S̄3 = 1) = H(S̄4|S̄2 = 1, S̄3 = 0) = H2(3/8).

So H(S̄4|S̄2, S̄3) = 2 · 1
6 H2(2/8) + 2 · 1

3 H2(3/8) 6 0.9067.
With the same method, numerically, we can show that
cap(Stan) 6 0.9045. So,

0.8689 6 cap(Stan) 6 0.9045.

V. CONCLUSION

In this paper we defined and studied Pólya string mod-
els. The exact capacity of the tandem-duplication and end-
duplication models was derived. In the case of complement
tandem duplication we gave bounds on the capacity. We make
several interesting observation. First, had we used a Pólya urn
model instead of a string model, then no difference would
have been observed between tandem and end duplication.
Indeed, the distribution of 0’s and 1’s in both cases is the
same. However, when considering the structure of a string,
the difference between the two comes to light. Additionally,
while the combinatorial capacity of end-duplication is known
to be 1, in the probabilistic model it varies depending on
the starting string. Similarly, for the complement tandem-
duplication model, it is easy to show that the combinatorial
capacity is 1, while the probabilistic capacity is bounded away
from both 0 and 1. An obvious question that is still open,
is to find solutions to the above-studied models when the
duplication length is greater than 1.
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