
136 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 1, JANUARY 2016

Codes Correcting Erasures and Deletions
for Rank Modulation

Ryan Gabrys, Member, IEEE, Eitan Yaakobi, Member, IEEE, Farzad Farnoud, Member, IEEE,
Frederic Sala, Student Member, IEEE, Jehoshua Bruck, Fellow, IEEE,

and Lara Dolecek, Senior Member, IEEE

Abstract— Error-correcting codes for permutations have
received considerable attention in the past few years, especially in
applications of the rank modulation scheme for flash memories.
While codes over several metrics have been studied, such as the
Kendall τ , Ulam, and Hamming distances, no recent research has
been carried out for erasures and deletions over permutations.
In rank modulation, flash memory cells represent a permutation,
which is induced by their relative charge levels. We explore
problems that arise when some of the cells are either erased
or deleted. In each case, we study how these erasures and
deletions affect the information carried by the remaining cells.
In particular, we study models that are symbol-invariant, where
unaffected elements do not change their corresponding values
from those in the original permutation, or permutation-invariant,
where the remaining symbols are modified to form a new
permutation with fewer elements. Our main approach in tackling
these problems is to build upon the existing works of error-
correcting codes and leverage them in order to construct codes
in each model of deletions and erasures. The codes we develop
are in certain cases asymptotically optimal, while in other cases,
such as for codes in the Ulam distance, improve upon the state
of the art results.

Index Terms— Coding theory, flash memories, rank modulation
codes, permutation codes, deletion codes.

I. INTRODUCTION

FLASH memory is the storage medium of choice in
portable consumer electronic applications, and high per-

formance solid-state drives (SSDs) are being introduced
into mobile computing, enterprise storage, data warehousing,
and data-intensive computing systems. The rapid increase
in the capacity of flash memories makes them attractive

Manuscript received June 2, 2015; accepted September 21, 2015. Date of
publication October 26, 2015; date of current version December 18, 2015. This
work was supported in part by the U.S.–Israel Binational Science Foundation,
Jerusalem, Israel, under Grant 2010075, in part by the Smart Scholarship, in
part by NSF under Grant CCF-1029030, Grant CCF-1150212, and Grant CIF-
1218005, in part by the NISE Program at SSC Pacific, in part by NSF GRFP,
and in part by Intellectual Ventures. This paper was presented at the IEEE
International Symposium on Information Theory in 2014 [6] and [7].

R. Gabrys is with Spawar Systems Center, San Diego, CA 92152 USA
(e-mail: ryan.gabrys@navy.mil).

E. Yaakobi is with the Department of Computer Science,
Technion–Israel Institute of Technology, Haifa 32000, Israel (e-mail:
yaakobi@cs.technion.ac.il).

F. Farnoud and J. Bruck are with the Electrical Engineering
Department, California Institute of Technology, Pasadena, CA 91125
USA (e-mail: farnoud@caltech.edu; bruck@caltech.edu).

F. Sala and L. Dolecek are with the Electrical Engineering Department,
University of California at Los Angeles, Los Angeles, CA 90095 USA
(e-mail: fredsala@ucla.edu; doleck@ee.ucla.edu).

Communicated by M. Schwartz, Associate Editor for Coding Techniques.
Digital Object Identifier 10.1109/TIT.2015.2493147

in these applications. However, the capacity increase of
these technologies presents major challenges in the areas
of device reliability and endurance. These challenges can
be overcome through innovative coding and data handling
techniques.

Flash memories are comprised of blocks of cells. Each cell
can store one or more bits of information. For example, a
typical block in current flash memories contains about one
million cells. The number of levels per cell is a fixed value that
varies between 2 and 16 in current technologies. One of the
main challenges in flash memories is to exactly program each
cell to its target level. In order to overcome this difficulty, rank
modulation codes were proposed and studied in [11]. In this
setup, the information is carried by the relative values between
the cells rather than by their absolute levels. Thus, every group
of cells induces a permutation, which is derived by the ranking
of the level of each cell in the group. Shortly after the work
in [11], several papers explored codes which correct errors in
permutations specifically for the rank modulation scheme; see
e.g., [1], [4], [8], [12], [26]. These works include different
metrics such as Kendall τ , Ulam, and Hamming distances.
However, none of these papers studied the setup where cells
in the permutations are either deleted or erased. The goal of
the present work is to establish the foundations and present
results for these faulty mechanisms.

The paradigms we explore are derived from a hardware
implementation of the modulation process in rank modula-
tion codes [14], [15], [20]. In particular, while reading and
comparing between the levels of the cells, it may happen
that some cells are corrupted and thus cannot be read cor-
rectly. This leads to erasures in the case where the locations
of the corrupted cells are known, and deletions otherwise.
Furthermore, the missing information about the corrupted cells
may or may not affect the values of the other cells. We provide
more detail below.

Assume that a permutation π is stored in the flash memory
cells. Depending on the read mechanism, while reading π ,
some of the cells could be interpreted as erasures, or, alter-
natively, as deletions. In traditional models, each symbol is
affected by such errors independently; however, when using
permutations, erasures and deletions can potentially affect
the other symbols as well. To simplify our discussion, we
assume for now that only one symbol is either erased or
deleted. We consider four different models, which correspond
to two choices of characteristics: first, erasure or deletion:

0018-9448 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

GABRYS et al.: CODES CORRECTING ERASURES AND DELETIONS FOR RANK MODULATION 137

whether the location of the lost cell is known or not known,
and, second, symbol invariance or permutation invariance:
whether the other symbols cannot be changed or may be
changed as a result of the erasure/deletion. We enumerate
these models as follows and provide an example of each.
Suppose that the stored permutation is (5, 3, 2, 4, 1) and the
third symbol (that is, 2) is affected by one of the four types
of errors. For each of the four error models, we provide the
resulting output.

1) Symbol-invariant erasure (SIE): (5, 3, ?, 4, 1),
2) Permutation-invariant erasure (PIE): (4, 2, ?, 3, 1),
3) Symbol-invariant deletion (SID): (5, 3, 4, 1),
4) Permutation-invariant deletion (PID): (4, 2, 3, 1).
Note the reasoning underlying the “symbol-invariant” and

“permutation-invariant” terminology: In the case of symbol
invariance, only the affected symbol is changed, but, as a
result, the remaining symbols no longer form a permutation
over {1, 2, . . . , n′}, where n′ is the number of available ele-
ments. Meanwhile, in the case of permutation invariance, the
other symbols are affected so that the (non-erased) symbols
continue to form a permutation.

Our main contribution in the first three models of era-
sures and deletions is to first identify an existing distance
metric for permutations that will provide codes in the cor-
responding model. We then introduce suitable codes in this
model. In particular, we show that codes based upon the
Hamming distance can be used to correct symbol-invariant
erasures (SIEs). We also show that the models of permutation-
invariant erasures (PIEs) and symbol-invariant deletions (SIDs)
are equivalent and that codes designed for the Ulam distance
can be used in these setups. For the fourth model, we intro-
duce an asymptotically optimal single PID-correcting code
construction.

To the best of our knowledge, the research on codes
combating errors defined using the proposed models is very
limited. We could only specify the paper by Levenshtein [19]
which falls under the SID model and the follow up works
in [24] and [25]. These works contained explicit constructions
only for the case of a single SID. In [17], deletion-correcting
codes capable of correcting a large number of deletions were
studied. In particular, the work in [17] considers codes of
length n capable of correcting t deletions where the quantity
n − t is a constant. In this work, we focus on SID correcting
codes capable of correcting a small number of deletions
(greater than one).

The rest of the paper is organized as follows. In Section II,
we formally define the erasure and deletion models studied in
the paper and review the Hamming and Ulam distances for per-
mutations. In Section III, we show how to use existing codes in
these three distance metrics in order to construct codes for the
proposed erasure and deletion models. In Section IV, we give
a construction of codes in the Ulam distance, corresponding
to the second and third models, which improves upon the
best known codes. Afterwards, we focus on the fourth and
most challenging model, dealing with permutation-invariant
deletions. Section V considers some simple properties of PIDs.
In Section VI, we derive an upper bound on the maximum
cardinality of a code which can correct a single PID.

In Section VII we give a construction for such a code which
is asymptotically optimal.

II. DEFINITIONS AND PRELIMINARIES

Let Sn denote the set of all n! permutations of n elements,
chosen to be {1, 2, . . . , n}. We use the vector notation to
denote a permutation π = (π1, π2, . . . , πn). Given some per-
mutation π = (π1, π2, . . . , πn) ∈ Sn , its inverse permutation
is π−1 = (π−1

1 , π−1
2 , . . . , π−1

n), where π−1
i is the location of

the element i in π . For example, for π = (6, 1, 3, 2, 5, 4) we
have π−1 = (2, 4, 3, 6, 5, 1). The set {1, . . . , n} is denoted
by [n], and for two positive integers a < b, the set {a, . . . , b}
is denoted by [a, b]. We denote the concatenation of two
sequences x, y by (x, y).

We now formally define the four models of symbol-
invariant/permutation-invariant erasures and deletions. For a
permutation π = (π1, . . . , πn) ∈ Sn , and a set of positions
I ⊆ [n], π(I) is the set π(I) = {πi : i ∈ I }. For an integer
a ∈ [n] and a subset J ⊆ [n], the integer a(J) ∈ [n] is defined
as a(J) = a − |{i ∈ J : i < a}|.

As an analogy, if a is the finishing position of a runner
in a race, and those runners finishing in positions given by
set J are disqualified, a(J) is the new finishing position of
the original runner. For example, assume π = (6, 1, 3, 2, 5, 4)
and I = {1, 4, 5}, so that π(I) = {6, 2, 5}. We take a = π3
and J = π(I) in the above definition yielding π3(π(I)) =
3(π({1, 4, 5})) = 3({6, 2, 5}) = 3− 1 = 2.

Definition 1: Assume that π = (π1, . . . , πn) is a permu-
tation in Sn and I ⊆ {1, . . . , n} is a positions set of size
t (0 � t � n). We consider the following four models of
erasures and deletions:

1) Symbol-Invariant Erasure (SIE): The permutation π
suffered t symbol-invariant erasures in the positions
set I , resulting in the vector π ′ = (π ′1, . . . , π ′n), if

a) for all i ∈ I , π ′i =?, and
b) for all i ∈ [n] \ I , π ′i = πi .

2) Permutation-Invariant Erasure (PIE): The permutation
π suffered t permutation-invariant erasures in the posi-
tions set I , resulting in the vector π ′ = (π ′1, . . . , π ′n),
if

a) for all i ∈ I , π ′i = ?, and
b) for all i ∈ [n] \ I , π ′i = πi (π(I)).

3) Symbol-Invariant Deletion (SID): The permutation π
suffered t symbol-invariant deletions in the positions
set I , resulting in the vector π ′ = (π ′1, . . . , π ′n−t), if 1

for all k ∈ [n] \ I and i = k(I), π ′i = πk .
4) Permutation-Invariant Deletion (PID): The permu-

tation π suffered t permutation-invariant deletions
in the positions set I , resulting in the permutation
π ′ = (π ′1, . . . , π ′n−t) ∈ Sn−t , if for all k ∈ [n] \ I and
i = k(I), π ′i = πk(π(I)).

A code C ⊆ Sn is called a t-SIE/PIE/SID/PID-correcting
code if it can correct up to t SIEs/PIEs/SIDs/PIDs,
respectively.

The next example illustrates these four models.

1Note that for k1 �= k2, we have k1(I) �= k2(I).

138 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 1, JANUARY 2016

Example 2: Let π = (6, 1, 3, 2, 5, 4) ∈ S6 and
I = {1, 4, 5}, so that there are three errors. Then, the following
vectors are the received ones for each model:

1) Symbol-Invariant Erasures: π ′ = (?, 1, 3, ?, ?, 4).
2) Permutation-Invariant Erasures: π ′ = (?, 1, 2, ?, ?, 3).
3) Symbol-Invariant Deletions: π ′ = (1, 3, 4).
4) Permutation-Invariant Deletions: π ′ = (1, 2, 3).
Note that, of the four models, the errors in the first model

in Definition 1 are the easiest to handle and those in the last
model are the hardest with respect to the amount of informa-
tion that is lost. We continue by reviewing the Hamming and
Ulam distances.

The Hamming distance between two permutations π,
σ ∈ Sn , denoted by dH (π, σ), is defined as the number of
positions for which π and σ differ. For two permutations
π, σ ∈ Sn , let �(π, σ) be the length of a longest common
subsequence of π and σ . The Ulam distance between π and
σ is defined as dU (π, σ) = n − �(π, σ), see also [2], [5], [8].

Example 3: Let π = (4, 3, 1, 2, 5) and σ = (4, 3, 5, 1, 2).
Then dH (π, σ) = 3 and dU (π, σ) = 1.

The minimum distance of a code, according to any metric,
is the minimum distance between any two distinct codewords
in the code. For a code C ⊆ Sn , its minimum Hamming and
Ulam distances are denoted by dH (C) and dU (C), respectively.

III. CODES FROM EXISTING CODES IN OTHER METRICS

In this section we present codes for the erasure and deletion
models defined in Section II. In particular, we show how
existing codes in the Hamming and Ulam distances can be
used for these models.

Let us start with symbol-invariant erasures. First notice that
if only a single SIE occurred then it is immediate to complete
the missing symbol since its position is marked by ‘?’ and
its value is the missing element in the permutation. Thus, the
code C = Sn is a single SIE-correcting code. For more than
a single SIE, we show in the next theorem that codes in the
Hamming distance are necessary and sufficient.

Theorem 4: A code C ⊆ Sn is a t-SIE-correcting code if
and only if dH (C) � t + 1.

Proof: We show that if dH (C) � t + 1 then C is a
t-SIE-correcting code by proving the contrapositive. Assume
that C has minimum distance dH (C) � t + 1 but is not a
t-SIE-correcting code. Thus, there are two permutations
π, σ ∈ C and two positions sets I1, I2 ⊆ [n], each of size
at most t , such that if π ′ is the result of SIEs in the positions
set I1 in π and σ ′ is the result of SIEs in the positions set
I2 in σ , then π ′ = σ ′. First notice that I1 = I2. Otherwise,
assume without loss of generality that there exists i ∈ I1\I2, so
we get π ′i = ? and σ ′i �= ?, which is a contradiction. Hence, we
can denote I1 = I2 = I and |I | � t . Then we get that for every
i ∈ [n] \ I , πi = π ′i = σ ′i = σi , and thus dH (π, σ) � |I | � t .
However, we assumed that dH (C) � t + 1, a contradiction.

Now, for the second direction, assume that C is a
t-SIE-correcting code. We view C as a code in [n]n so that
its minimum Hamming distance has to be at least t + 1, as
desired.

We next move to the models of PIEs and SIDs. Note
that with PIEs the locations are known but the values are

not known, while with SIDs the values are known while the
locations are unknown.

The next lemma establishes the surprising fact that the two
models are equivalent. Let π = (π1, . . . , πn) be a permutation
in Sn . Suppose π suffered t PIEs in the positions set I .
We denote the result by the length-n vector π ′ = (π ′1, . . . , π ′n).
With a slight abuse of notation, we denote by π ′−1

P I E =
(π ′−1

1 , . . . , π ′−1
n−t) the length-(n− t) vector which specifies the

locations of the (n − t) non-erased symbols in π ′. Similarly,
if π suffered t SIDs in the positions set I , let the length-
(n − t) vector π ′ = (π ′1, . . . , π ′n−t) be the resulting sequence.
We denote by π ′−1

S I D = (π ′−1
1 , . . . , π ′−1

n) the length-n vector
which specifies the locations of the symbols [n] in π ′, where
a ‘?’ indicates that the symbol does not appear in π ′.

The preceding definitions allow us to use the concept of
permutation inverse for sequences that may not be per-
mutations in Sn . For example, if π = (4, 3, 5, 1, 2) and
two PIEs occurred in the second and fourth positions, then
π ′ = (2, ?, 3, ?, 1) and π ′−1

P I E = (5, 1, 3). If two SIDs occurred
in the second and fourth positions of π , then π ′ = (4, 5, 2),
and π ′−1

S I D = (?, 3, ?, 1, 2).
Lemma 5: If π ′ is the result of t PIEs over a permuta-

tion π ∈ Sn, then π ′−1
P I E is the result of t SIDs over the

permutation π−1. If π ′ is the result of t SIDs over a per-
mutation π ∈ Sn, then π ′−1

S I D is the result of t PIEs over the
permutation π−1.

Proof: For the first claim, let π ′ be the result of t PIEs in π
given by the positions set I . We note that for every k ∈ [n]\ I ,
π ′k = πk(π(I)) and hence the location of i ∈ [n − t] in π ′
is the location of the symbol ki in π such that i = ki (π(I)).
Therefore, for π ′−1

P I E = (π ′−1
1 , . . . , π ′−1

n−t), we have that for

i ∈ [n − t], π ′−1
i = π−1

ki
, where i = ki (π(I)). Therefore,

π ′−1
P I E is the vector resulting from π−1 suffering t SIDs in the

positions set π(I).
To prove the second claim, assume that π suffered t SIDs in

the positions set I , resulting in the vector π ′ = (π ′1, . . . , π ′n−t),
such that for i ∈ [n − t], π ′i = πki , where i = ki (I). Let
π ′−1

S I D = (π ′−1
1 , . . . , π ′−1

n) be as defined previously. That is, for
i ∈ π(I) have π ′−1

i = ? and for i /∈ π(I), π ′−1
i = π−1

i (I), or,
since π−1(π(I)) = I , π ′−1

i = π−1
i (π−1(π(I))). Hence, the

vector π ′−1
S I D equals the vector resulting from π−1 suffering t

PIEs in the positions set π(I).
As a result of Lemma 5 we conclude the following corollary.
Corollary 6: There exists a t-PIE-correcting code of cardi-

nality M if and only if there exists a t-SID-correcting code of
cardinality M.

To complete this discussion we only need to consider codes
in one of these two models. We will show how codes in the
Ulam distance are necessary and sufficient for codes in the SID
model. The following property was stated by Levenshtein [19]
but we prove it here for the completeness of the results in the
paper.

Theorem 7: A code C ⊆ Sn is a t-SID-correcting code if
and only if dU (C) � t + 1.

Proof: We first show that if C is a t-SID-correcting
code then dU (C) � t + 1. Assume on the contrary that C is
t-SID-correcting but that dU (C) � t . Let π, σ ∈ C be such

GABRYS et al.: CODES CORRECTING ERASURES AND DELETIONS FOR RANK MODULATION 139

that dU (π, σ) = t ′ � t . Hence, π and σ have a common
subsequence of length �(π, σ) = n−dU (π, σ) = n−t ′ � n−t .
Let S be the set of symbols in this common subsequence. Let
Iπ be the positions set of the symbols [n]\S in π and similarly
let Iσ be the positions set of the symbols [n] \ S in σ . Then,
if π ′ is the result of t ′ SIDs in π in the positions set Iπ and
σ ′ is the result of t ′ SIDs in σ in the positions set Iσ , with
t ′ � t , we get that π ′ = σ ′. Therefore, the code C is not a
t-SID-correcting code, which is a contradiction.

Next we prove the other direction. Assume that C is not
a t-SID-correcting code but that dU (C) � t + 1. Thus, there
exist two distinct permutations π, σ ∈ C and two positions
sets I1, I2 ⊆ [n], each of size at most t , such that if π ′ is
the result of SIDs in the positions set I1 in π and σ ′ is the
result of SIDs in the positions set I2 in σ , then π ′ = σ ′. First
we have that |I1| = |I2| and since π ′ = σ ′, π and σ have a
common subsequence of length n − |I1| � n − t . Therefore,
dU (π, σ) � n − (n − t) = t , a contradiction.

In the next section, we introduce novel constructions of
codes correcting PIEs and SIDs.

IV. NEW CODES CORRECTING PIEs/SIDs

The purpose of this section is to present novel codes
correcting permutation-invariant erasures or symbol-invariant
deletions. Recall that according to Lemma 5 and Theorem 7,
correcting either class of errors is equivalent to correcting
errors in the Ulam metric. For this reason, our proposed codes
will target this metric. We begin by introducing some notation,
tools, and codes in subsection IV-A. We build on these
results to introduce the main construction in subsection IV-B.
In subsection IV-C, we comment on how the proposed con-
struction improves upon the state of the art codes for the Ulam
metric given in [8] in the case where the Ulam distance is
at most 6. For ease of presentation, in the remainder in this
section we use the terms deletion and PID (erasure and SIE,
respectively) interchangeably.

A. Notation and Location-Correcting Auxiliary Code

For a sequence x with elements from the set [n] ∪ {?}
and for s ∈ [n], let D(x, s) be the result of removing all
occurrences2 of the symbol s in x. If s is not contained in x,
then D(x, s) = x. More generally, for I ⊂ [n], D(x,I)
is the result of removing all symbols from I in x. (Note
that we use cursive for set I containing the symbols to be
deleted and regular case for the set I containing the locations
of symbols to be deleted.) For I ′ ⊂ [n], let σ = Er(x,I ′) be
the result of substituting each of the elements of I ′ in x with
the symbol ‘?’.

Next, we introduce the first of several auxiliary codes
needed for our new construction. In order to distinguish
between the different auxiliary codes, we label them with a
superscript based on a code attribute. As the following code
can determine the locations of deletions (given that these
locations satisfy a certain constraint to be explained later),

2Note that here, x is not a permutation over Sn but rather a sequence over
[n] ∪ {?}, so that there may be several occurrences of a particular symbol.

we refer to it by CL . For the remainder of this section, we
assume that n, � are positive integers where n > � and �|n.
We define

CL
�,n = {π ∈ Sn : i ∈ [n], πi ≡ i − 1(mod�)}.

For example, π = (3, 4, 2, 6, 1, 5) ∈ CL
3,6. For σ =

(σ1, . . . , σn) ∈ Sn , the vector σ(mod�) = (σ ′1, . . . , σ ′n) is
defined by σ ′i = σi (mod�) for i ∈ [n]. Thus, for any code-
word π ∈ CL

�,n , the vector π(mod�) is a periodic sequence of
length n and period � where each period is (0, . . . , �− 1).

We now describe a decoding map DL
�,n and an associated

algorithm for the code CL
�,n. This algorithm inserts ‘?’ symbols

into σ so that in the resulting vector, for each i , if the element
at position i is not a ‘?’, then it equals i−1 modulo �. Suppose
that π ∈ CL

�,n is the stored codeword and σ is the retrieved
word, where σ = D(π,I) with I ⊂ [n], |I| = t < n. The
input to DL

�,n is σ .

1) Initialize j = 0 and let σ (1) = (σ, 0).
2) Let j = j + 1.
3) Let i be the smallest element in [n − t + j] such that

σ
(j)
i �≡ i − 1(mod�) and σ

(j)
i �= ?. If no such symbol

exists, go to step 5).

4) Let σ (j+1) be the result of inserting the symbol ‘?’ into
σ (j) at position i j . Go to step 2).

5) Define π̂ = (σ
(j)
1 , . . . , σ

(j)
n−t+ j−1).

We illustrate the decoding map DL
�,n with the following

example.
Example 8: Suppose n = 12 and � = 3 and let

π = (3, 7, 5, 9, 1, 8, 6, 4, 2, 12, 10, 11) ∈ CL
3,12,

and let I = {1, 3, 8, 11}. Then,

σ = D(π,I) = (7, 5, 9, 6, 4, 2, 12, 10).

Then, according to step 1), we have

σ (1) = (7, 5, 9, 6, 4, 2, 12, 10, 0).

Next, continuing the process, we have that

σ (2) = (?, 7, 5, 9, 6, 4, 2, 12, 10, 0),

σ (3) = (?, 7, 5, 9, ?, 6, 4, 2, 12, 10, 0),

σ (4) = (?, 7, 5, 9, ?, ?, 6, 4, 2, 12, 10, 0),

σ (5) = (?, 7, 5, 9, ?, ?, 6, 4, 2, 12, 10, ?, 0),

and, finally,

π̂ = (?, 7, 5, 9, ?, ?, 6, 4, 2, 12, 10, ?).
Let Consec(π,I, �) be equal to 1 if there exists a

subset of � symbols from I that appear consecutively in π .
Otherwise, Consec(π,I, �) = 0. If Consec(π,I, �) = 1,
then let L�(π,I) be the set of symbols that constitute
the first occurrence of a subset of � symbols from I
that appear consecutively in π . If Consec(π,I, �) = 0,
then let L�(π,I) = ∅. For example, let π be as in
Example 8, then, Consec(π, {3, 7, 5, 8, 6, 4}, 3) = 1 and
L3(π, {3, 7, 5, 8, 6, 4}) = {3, 5, 7}.

Let x be a sequence with symbols from [n]∪{?} and let |x|
denote the length of x. The following claim follows directly

140 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 1, JANUARY 2016

from the definition of the map DL
�,n . Recall that the operation

Er(π,I) substitutes each of the elements of I present in π
with the symbol ‘?’.

Claim 9: For positive integers n, �, suppose π ∈ CL
�,n,

I ⊂ [n], and σ = D(π,I). If Consec(π,I, �) = 0, then
DL

�,n(σ) = Er(π,I). Otherwise, |DL
�,n(σ)| � n−� < |π | = n.

Claim 9, in other words, states that if a certain constraint
(that is, longest maximal substring deleted from π has length
less than �) is met, then the output of DL

�,n is π with symbols
of I replaced by ‘?’s. Otherwise, the algorithm returns a
sequence with length shorter than the length of π .

The decoding map can only fail to place elements in their
proper positions if consecutive elements corresponding to
entire periods of length � are deleted. As a result, we note that
the output sequence must have length n− k� for some k � 0.
In particular, if the number of deletions is smaller than 2�, the
output sequence must have length n if Consec(π,I, �) = 0
and length n − � if Consec(π,I, �) = 1.

This concludes the analysis of the location-correcting
code CL

�,n . We will rely on CL
�,n as a building block for our

novel code construction in the following.

B. Code Construction

We begin by giving two more auxiliary codes. The first
code, which we call CE

n′ ⊆ Sn′ , can correct a single SID. The

superscript E in CE
n′ refers to the fact that CE

n′ has a prescribed
edit or deletion distance. In particular, CE

n′ can correct a single
insertion or deletion. A construction of such a code and an
associated decoder DE

n′ were given in [19].
The decoder DE

n′ operates as follows. Recall that the oper-
ation D(π, s) removes the element s from π . Suppose σ =
D(π, s), where π ∈ CE

n′ . The output of DE
n′(σ) is the ordered

triplet (s, s′, s′′) where s is the symbol deleted from π to
obtain σ , s′ is the symbol immediately before s in π , and s′′
is the symbol immediately after s in π . If s is the final symbol
in π , then s′′ = 0 and similarly if s is the first symbol in π ,
then s′ = 0.

The second code CH
d,n ⊆ Sn has minimum Hamming

distance d . The structure of the code CH
d,n ⊆ Sn will be

described in more detail in Section IV-C. For the next sub-
section, we only require that CH

d,n has minimum Hamming
distance d .

Using the three auxiliary codes, we now present a code
capable of correcting 2� − 1 SIDs. The idea is to constrain
our codewords (or certain functions of our codewords) to
simultaneously be members of each of the codes CL

�,n , CE
n/�,

and CH
3�−2,n . Below, we explain the intuition behind this idea,

and follow up by providing more detail later on in this
section.

Our goal is to correct up to 2�− 1 SIDs. We first identify
the locations of the deletions. If fewer than � of the deletions
are consecutive, we can correctly identify their locations
with DL

�,n . If � or more of the deletions are consecutive, we
look to identify the location of the first element of the con-
secutive deletions with DE

n/�. Doing so allows us to fix all the
remaining deletion locations. Once these locations have been
determined, we can treat the deletions as erasures, which can

be corrected by the decoder of the third (Hamming metric)
code.

For a permutation π ∈ Sn and an integer 0 � i � � − 1,
let R�(π, i) be the subsequence of π that only contains the
symbols from the set {s ∈ [n] : s ≡ i(mod�)}. (The notation
R refers to the fact that we restrict π to elements congruent
to i modulo �.) For shorthand, denote {1, 2, . . . , n} as [n].
For positive integers m, n, k, and x ∈ [n]m , let (x − k)/� =
(y1, . . . , ym) be such that for i ∈ [m], yi =
(xi − k)/��.
We introduce the code CU

2�,n, where U refers to the Ulam
metric.

Construction 10: For positive integers n, � where n > � and
�|n, let CU

2�,n ⊆ Sn be the code consisting of all permutations
π ∈ Sn that satisfy the following conditions:

1) π ∈ CL
�,n ,

2) (R�(π, i)− i)/� ∈ CE
n/� for 0 � i � �− 1, and

3) π ∈ CH
3�−2,n .

We show that the code CU
2�,n can recover from up to any

m = 2� − 1 SIDs (or, equivalently, that it has Ulam distance
at least 2�.) Suppose σ = D(π,I) ∈ [n]n−m where I ⊆ [n],
|I| = m, and π ∈ CU

2�,n.

We detail the decoding procedure. We begin by computing
Consec(π,I, �). According to Claim 9, DL

�,n can determine
the locations of all the deletions unless Consec(π,I, �) = 1.
Recall that if Consec(π,I, �) = 1, then a substring of length
at least � is deleted from π and DL

�,n returns a vector of length
less than n. In this case, the decoder DE

n/� is used to determine
the location where the substring (of length at least �) was
deleted from π . The locations of any remaining deletions are
discovered with a further application of DL

�,n . Now, in either
case, the deletion locations are known, so that we may treat
them as erasures. Using DH

3�−2,n , the values of the deleted
symbols are recovered.

Next, we formally define the decoding procedure. We refer
to the decoding map for CU

2�,n as DU
2�,n : [n]n−m → Sn . The

input to the map is σ and the output is an estimate π̂ of the
codeword π ∈ CU

2�,n. The decoder is presented in Algorithm 1,
where we use the following notation. Let s′, s′′ ∈ [0, n] and
σ ∈ [n]n−m be a vector. We define σ [s′, s′′] as follows.
If s′ = 0, then σ [s′, s′′] is the set of symbols that appear
before the symbol s′′ in σ . Similarly, if s′′ = 0, then σ [s′, s′′]
is the set of symbols that appear after the symbol s′ in σ .
Lastly, if s′, s′′ > 0, σ [s′, s′′] refers to the set of symbols in σ
that are between the symbols s′, s′′, exclusive.

Theorem 11: The code CU
2�,n has Ulam distance at least 2�.

Proof: Let π be a permutation in CU
2�,n affected by

deletions of elements given by the set I. The result is proven
by showing that if I has size no more than 2�− 1, the output
π̂ of Algorithm 1 equals π . In this proof, let B = L�(π,I).
In step 1, we compute DL

�,n(σ). The output of step 2 has two
possibilities.

In the first case, suppose that at step 2 we have |σ (1)| = n.
Then, from Claim 9, we have σ (1) = Er(π,I) and B = ∅.
In step 10, since π belongs to a code with minimum Hamming
distance 3�− 2, and |I| = 2�− 1 � 3�− 2, the values of the
deleted symbols can be recovered. Thus, when |σ (1)| = n, we
have that π̂ = π .

GABRYS et al.: CODES CORRECTING ERASURES AND DELETIONS FOR RANK MODULATION 141

Algorithm 1 DU
2�,n : [n]n−m → Sn

input : the retrieved permutation σ = D(π,I)
output: estimate π̂ of π

1 σ (1)←− DL
�,n(σ);

2 if |σ (1)| = n then
3 σ (4)←− σ (1);
4 else
5 k ←− min{x ∈ Z� : |R�(σ, x)| = n

� − 1};
(s, s′, s′′)←− DE

n/� ((R�(σ, k)− k)/�);
S = σ [� · s′ + k, � · s′′ + k];

6 σ (2) ←− D(σ,S);
7 σ (3)←− result of inserting � · s + k between � · s′ + k

and � · s′′ + k in σ (2);
8 σ (4)←− DL

�,n(σ
(3));

9 end
10 π̂ ←− DH

3�−2,n(σ
(4));

Next we have the case that |σ (1)| = n − �, which, as
seen from our previous discussion, is the only possibility if
|σ (1)| �= n and there are fewer than 2� deletions. Since
out of the (at most) 2� − 1 deleted symbols, the � symbols
of B are consecutive in π , each element of B belongs to a
distinct equivalence class modulo �. There are up to � − 1
other deleted symbols so that, since there are � equivalence
classes modulo �, there exists an equivalence class modulo �
with precisely one deleted symbol. Hence, there exists k such
that |R�(σ, k)| = n

� − 1 (the algorithm arbitrarily picks the
smallest possible value for k in step 5). The deleted symbol
from R�(π, k), that is the only deleted symbol that is equal to

k(mod�), is � · s + k, where (s, s′, s′′) = DE
n/�(

R�(σ,k)−k
�).

For simpliciy of presentation, in the algorithm and in this
discussion we ignore the possibility that s′ = 0 or s′′ = 0;
these cases can be handled similarly.

Since the � symbols of B are consecutive in π , there is one
element of B that is equal to k(mod�). But since � · s + k is
the only deleted element from π that is equal to k modulo �,
we have � · s + k ∈ B . This in turn implies that the symbols
of B are located between the symbol � · s′ + k and the symbol
� · s′′ + k in π . So the size of the set S in step 5 is at most
(2�− 1)− � = �− 1, where 2�− 1 is the number of symbols
between � · s′ + k and � · s′′ + k in π and � is the number of
symbols in B . Hence, |σ (2)| = n − |I| − |S| � n − (3�− 2).

In step 7 of the algorithm, � · s + k is inserted in its correct
position. So now there are at most 3� − 3 elements missing
from σ (3) compared to π . In other words, there is a set I ′ such
that σ (3) = D(π,I ′), where |I ′| � 3�−3. Since � ·s+k /∈ I ′,
we have Consec(π,I ′, �) = 0. Hence, by Claim 9, σ (4) =
Er(π,I ′) at step 10. The decoder DH

3�−2,n can recover π from
σ (4) in step 12 since |I ′| � 3�−3 and the minimum Hamming
distance of the code CU

2�,n is 3�− 2.
We illustrate Algorithm 1 with the following example.
Example 12: Take π = (9, 7, 8, 6, 1, 11, 3, 10, 2, 12,

4, 5) ∈ CU
6,12 and � = 3. Suppose σ = D(π,I) =

(9, 7, 11, 3, 2, 12, 5) (the elements that were deleted to

produce D(π,I) are labeled in π in bold) where
I = {1, 4, 6, 8, 10}. We will show that, if Algorithm 1 is
invoked with σ as input, then π̂ = π .

At step 1, we have σ (1) = (9, 7, 11, 3, ?, 2, 12, ?, 5). Note
that one modulo 3 period has not been recovered. Then,
since |σ (1)| = 9 < 12, we proceed to step 5. At step 5,
k = 0 since |R3(σ, 0)| = |(9, 3, 12)| = 4 − 1. Then
at step 6, the input to the decoder DE

4 is (3, 1, 4) and
the output is (s, s′, s′′) = (2, 3, 1). At step 7, the set
S = σ [9, 3] = (7, 11). Notice that |S| = 2 in this case.
After the elements from the set S are removed from σ , at
step 8 we have σ (2) = (9, 3, 2, 12, 5). At step 9, we insert
the symbol 6 into σ (2) giving that σ (3) = (9, 6, 3, 2, 12, 5).
At step 10, σ (4) = (9, ?, ?, 6, ?, ?, 3, ?, 2, 12, ?, 5). Since there
are 6 total erasures and DH

7,12 is the decoder for a code with
Hamming distance 7, the output of DH

7,12 at step 12 will be
π̂ = (9, 7, 8, 6, 1, 11, 3, 10, 2, 12, 4, 5) = π as desired.

In the following subsection, we consider the size of a
code created according to Construction 10 and compare
the cardinalities of our codes to those of the codes
from [8].

C. The Cardinality of CU
2�,n

In this subsection, we consider the size of a code CU
2�,n.

In order to do so, we consider in more details the con-
straints a permutation π must satisfy to be a codeword
in CU

2�,n .

We first revisit a mapping, referred to as the signature,
which was used in [24] to construct single-deletion-correcting
codes over non-binary vectors. Let m > 2 be an integer. For
y ∈ [m]n , define the binary length-(n − 1) signature α(y) =
(α(y)1, . . . , α(y)n−1) as follows. For 1 � i � n − 1,

α(y)i =
{

1, if yi+1 � yi .

0, otherwise.
(1)

The following is well-known.
Theorem 13 (See [19], [24]): For a ∈ Zn, the code

Ca
n = {π = (π1, . . . , πn) ∈ Sn :

n−1∑
i=1

iα(π)i ≡ a mod n}

can correct a single SID.
In the following we assume � is an integer and n + 1

an odd prime, where �|n. Recall that CU
2�,n ⊆ CL

�,n . We will
introduce a set of constraints that will partition the set
CL

�,n into a number of subsets, each of which will be
shown to satisfy the second and third properties required
by the construction of CU

2�,n. Then, we will apply the
pigeonhole principle to lower bound the maximal cardinality
of CU

2�,n .
The constraints we introduce will partition the codewords

π = (π1, . . . , πn) ∈ CL
�,n into (n + 1)3�−3

(n
�

)� sets. The con-
straints will be specified by the vector a = (a1, a2, . . . , a3�−3,
a3�−2, . . . , a4�−3) where for 1 � i � 3�− 3, ai ∈ G F(n + 1)
and for 3� − 2 � i � 4� − 3, ai ∈ Zn/�. Specifically, the

142 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 1, JANUARY 2016

constraints we introduce are

a1 =
n∑

i=1

πi ,

a2 =
n∑

i=1

i · πi ,

...

a3�−3 =
n∑

i=1

i3�−4 · πi ,

a3�−2 =
n/�−1∑

i=1

i · α (R�(π, i)/�)i ,

...

a4�−3 =
n/�−1∑

i=1

i · α ((R�(π, i)− (�− 1))/�)i ,

where the operations in the first 3� − 3 equations take place
over the field G F(n + 1) and the operations in the last �
equations are over Zn/�. We refer to the set of sequences
satisfying the constraints corresponding to vector a by Ca

n .
For any choice of a, notice that the first 3� − 3 equations

written above generate a Vandermonde matrix which is full
rank over G F(n+1). Therefore, we have that each of the sets
Ca

n has Hamming distance at least 3�−2. Furthermore, the final
� equations ensure that the sets Ca

n can be decomposed into
� single deletion codes as required by the second condition
in Construction 10. Therefore, each of the sets Ca

n forms a
code CU

2�,n.
Notice that we can actually remove the first constraint since

if π ∈ Sn , then
∑n

i=1 πi = 0 in G F(n+1). Now, observe that
the cardinality of CL

�,n is given by ((n/�)!)�. This follows from
a simple counting argument: we have n/� choices of elements
for each of the terms in the first period, n/� − 1 choices for
the elements in the second period, and so on. Next, we have a
total of (n+1)3�−4(n/�)� choices for vector a. Then, applying
the pigeonhole principle, there must exist some a such that the
corresponding code Ca

n = CU
2�,n has cardinality satisfying

|CU
2�,n| �

((n
�)!)�

(n + 1)3�−4
(n

�

)�
.

We now compare the cardinality of our codes to those of
the state of the art codes from [4] and [8]. Let AH (n, t) be
the size of a code of length n over Sn with Hamming distance
at least t . In [8], a construction was provided that produced
codes of Ulam distance t , length n, and cardinality at least
AF S M(n, t) where

AF S M(n, t) =
k∏

i=1

AH

(⌈ n

2i

⌉
− 1,

3t

2

)
, (2)

and k =
log2
n

3t/2+1�. In [4], the codes from (2) were
improved upon and new codes of Ulam distance t , length n,

and cardinality at least AC V (n, t) were derived such that

AC V (n, t) =
s∑

j=0

u j∏
i=1

AH

(⌈n − j (3t + 1)

2i

⌉
− 1,

3t

2

)
, (3)

where s =
⌊

n
3t+1

⌋
and u j =

⌊
log2

n− j (3t+1)
3t/2+1

⌋
for j ∈ [0, s].

Let Anew(n, t) = (2n
t !)t/2

(n+1)3(t/2)−4
(

2n
t

)t/2 . In this section, we

have provided a construction for a code with Ulam dis-
tance t and length n and showed that it must have at least
Anew(n, t) codewords. In the following lemma, we show that
Anew(n, t) > AF S M(n, t) and Anew(n, t) > AC V (n, t) when
n is large and t � 6. The proof can be found in Appendix A.

Lemma 14: For sufficiently large n such that n + 1 is a
prime, t|2n, and t � 6, ANew(n, t) > AF S M(n, t) and
ANew(n, t) > AC V (n, t).

V. BASIC PROPERTIES OF PIDs

In this section, we consider some properties of permutation-
invariant deletions. We first revisit the previously introduced
model for PIDs. We also introduce the notion of permutation-
invariant insertions (PIIs), which will be necessary in the
sequel.

Recall from Definition 1 that a permutation π experiences t
PIDs in the positions set I ⊆ [n], resulting in the permutation
(π ′1, . . . , π ′n−t) ∈ Sn−t , if for all k ∈ [n] \ I and i = k(I),
π ′i = πk(π(I)), where for a ∈ [n] and I ⊆ [n], a(I) ∈ [n]
is the integer a(I) = a − |{i ∈ I : i < a}|. For convenience,
throughout the remainder of this paper, we will write π ′ as
π↓,I , where the ↓ indications deletions and I is the set of
elements (not locations) to be deleted.

In particular, a permutation π = (π1, . . . , πn) ∈ Sn

experiences a single PID of the symbol π j at position j ∈ [n],
resulting in the permutation π↓,{π j } if

π↓,{π j } = (π ′1, . . . , π ′j−1, π
′
j+1, . . . , π

′
n) ∈ Sn−1, (4)

where for 1 � i � n (i �= j), we have

π ′i =
{

πi , if πi < π j

πi − 1, otherwise.
(5)

For shorthand, we will write π↓,π j = π↓,{π j }.
For a permutation π = (π1, . . . , πn) ∈ Sn , it is straightfor-

ward to see that if (πi1 , . . . , πit) is a decreasing vector (i.e.,
πi1 > πi2 > · · · > πit) and I = {πi1 , . . . , πit }, then from (4),

(((π↓,πi1
)↓,πi2

) . . .)↓,πit
= π↓,I . (6)

Let BD,t(π) be the set of permutations resulting from t
PIDs in π , i.e., BD,t(π) = {π↓,I : I ⊂ [n], |I| = t}, where
1 � t � n. For shorthand, we will write BD,1(π) = BD(π).
Therefore, a code C is a t-PID-correcting code if for any
distinct π, σ ∈ C, BD,t(π) ∩ BD,t(σ) = ∅.

Let us define the model of permutation-invariant inser-
tions (PIIs). We say that a permutation π = (π1, . . . , πn) ∈ Sn

experiences a single PII of the symbol s ∈ [n + 1] at position
j ∈ [n + 1], resulting in the permutation π↑,s, j if

π↑,s, j = (π ′1, . . . , π ′j−1, s, π ′j , . . . , π ′n) ∈ Sn+1, (7)

GABRYS et al.: CODES CORRECTING ERASURES AND DELETIONS FOR RANK MODULATION 143

where for 1 � i � n, we have

π ′i =
{

πi , if πi < s

πi + 1, otherwise.

For example, if π = (3, 1, 4, 2), then π↑,3,2 =
(4, 3, 1, 5, 2).

Let BI (π) be the set of all permutations obtained by
applying a single PII to π , that is,

BI (π) = {π↑,s, j : s, j ∈ [n + 1]}.
More generally, let BI,t (π) = {σ ∈ Sn+t : ∃(σ (0) =
π, σ (1), σ (2), . . . , σ (t−1), σ (t) = σ), σ (i) ∈ BI (σ

(i−1)), 1 �
i � t}, so that BI,t (π) is the set of permutations possible
given that t successive single insertions occur to π . (Here,
σ (i) is formed by a single insertion into σ (i−1) for 1 � i � t .)
We say that a code C is a t-PII-correcting code if for any
π, σ ∈ C, BI,t (π) ∩ BI,t (σ) = ∅.

The following claims will be useful in subsequent deriva-
tions. Claim 15 is straightforward to verify. The proofs of
Claims 16 and 17 are included in Appendix B.

Claim 15: Let π = (π1, . . . , πn) ∈ Sn. Then, for any
j ∈ [n], π = (π↓,π j)

↑,π j , j . Similarly for any s, j ∈ [n + 1]
π = (π↑,s, j)↓,s .

Claim 16: Let π = (π1, . . . , πn) ∈ Sn, s, t ∈ [n] and
suppose that s < t . Then (π↓,s)↓,t−1 = (π↓,t)↓,s .

Claim 17: Let π ∈ Sn and j, k, s, t ∈ [n + 1] such that
s � t . Then,

• If j < k, then (π↑,s, j)↑,t+1,k+1 = (π↑,t,k)↑,s, j .
• If j > k, then (π↑,s, j)↑,t+1,k = (π↑,t,k)↑,s, j+1.
• If j = k and s < t , then (π↑,s, j)↑,t+1, j = (π↑,t, j)↑,s, j+1.
The last three claims will be useful in showing that, sim-

ilarly to the traditional setup of deletions and insertions in
vectors [18], there is also a duality between insertions and
deletions in permutations.

Lemma 18: For any π, σ ∈ Sn, BD(π)∩BD(σ) �= ∅ if and
only if BI (π) ∩ BI (σ) �= ∅.

Proof: We first prove that if BD(π) ∩ BD(σ) �= ∅ then
BI (π) ∩ BI (σ) �= ∅. Let τ ∈ BD(π) ∩ BD(σ) so there exist
j, k ∈ [n] such that π↓,π j = σ↓,σk = τ . Notice that from
Claim 15, π = τ↑,π j , j and σ = τ↑,σk,k . Assume without loss
of generality that π j � σk . We first consider the case where
j < k. From Claim 17, we conclude that

π↑,σk+1,k+1 = (τ↑,π j , j)↑,σk+1,k+1= (τ↑,σk,k)↑,π j , j = σ↑,π j , j ,

and thus BI (π) ∩ BI (σ) �= ∅.
Now, suppose j > k, where, as before, π j � σk . From

Claim 17, we have

π↑,σk+1, j = (τ↑,π j , j)↑,σk+1,k = (τ↑,σk ,k)↑,π j , j+1= σ↑,π j , j+1,

and so BI (π)∩BI (σ) �= ∅ in this case as well. Now suppose
j = k. First notice that if j = k and π j = σk , then π = σ
and so the result trivially holds. Therefore we assume π j < σk

and j = k. Then from Claim 17, we have (τ↑,π j , j)↑,σk+1, j =
(τ↑,σk , j)↑,π j , j+1 and again BI (π) ∩ BI (σ) �= ∅. Therefore,
BI (π) ∩ BI (σ) �= ∅ in all cases, as desired.

Now we prove that if BI (π) ∩ BI (σ) �= ∅ then BD(π) ∩
BD(σ) �= ∅. Let θ ∈ BI (π) ∩ BI (σ) and thus there exists
j, k, s, t ∈ [n + 1] such that

π↑,s, j = σ↑,t,k = θ = (θ1, . . . , θn+1).

Recall that from Claim 15, we have π = θ↓,s and σ = θ↓,t .
First, if s = t , then j = k. Furthermore, if j = k and s = t
then π = σ and the result is straightforward.

Next, suppose, without loss of generality, that s < t . From
Claim 16,

π↓,t−1 = (θ↓,s)↓,t−1 = (θ↓,t)↓,s = σ↓,s .

By the assumption s < t , we have s, (t − 1) ∈ [n], and thus
we showed that BD(π) ∩ BD(σ) �= ∅, as required.

The next theorem generalizes the previous result.
Theorem 19: For any π, σ ∈ Sn, BD,t(π)∩BD,t(σ) �= ∅ if

and only if BI,t (π) ∩ BI,t (σ) �= ∅.
Proof: We first show by induction on t that for all n if

BD,t(π) ∩ BD,t(σ) �= ∅ for π, σ ∈ Sn , then there exist t − 1
permutations τ ′(1), . . . , τ (t−1) ∈ Sn , such that

BD(τ (i)) ∩ BD(τ (i+1)) �= ∅,
for 0 � i � t − 1, while τ (0) = π and τ (t) = σ .

It is clear to see that the claim holds for all n if t = 1. Let
us assume that the induction assertion holds for some t � 1
and we will prove its correctness for t + 1. Let π, σ ∈ Sn be
such that BD,t+1(π)∩BD,t+1(σ) �= ∅. According to (6), there
exist π ′, σ ′ ∈ Sn−1 such that π ′ ∈ BD(π), σ ′ ∈ BD(σ) and

BD,t(π
′) ∩ BD,t(σ

′) �= ∅.
According to the induction assumption there exist t − 1
permutations τ ′(1), . . . , τ ′(t−1) ∈ Sn−1, such that

BD(τ ′(i)) ∩ BD(τ ′(i+1)) �= ∅,
for 0 � i � t − 1, while τ ′(0) = π ′ and τ ′(t) = σ ′. According
to Lemma 18, for 1 � i � t , there exists τ ′(i) ∈ Sn such that

τi ∈ BI (τ
′(i−1)) ∩ BI (τ

′(i)).

Therefore, we have t permutations τ (1), . . . , τ (t), where
according to Claim 15, τ ′(i−1), τ ′(i) ∈ BD(τ (i)) for 1 � i � t .
In particular, for 1 � i � t − 1,

τ ′(i) ∈ BD(τ (i) ∩ BD(τ (i+1)),

and thus BD(τ (i)) ∩ BD(τ (i+1)) �= ∅. Note also that π ′ =
τ ′(0) ∈ BD(π) and σ ′ = τ ′(t) ∈ BD(σ), and thus, if we let
τ (0) = π and τ (t+1) = σ , then BD(τ (i))∩BD(τ (i+1)) �= ∅ for
0 � i � t .

By a similar induction it is possible to show the oppo-
site property. Namely, if there exist t − 1 permutations
τ (1), . . . , τ (t−1) ∈ Sn , such that BD(τ (i)) ∩ BD(τ (i+1)) �= ∅,
for 0 � i � t−1, while τ (0) = π , then BD,t(π)∩BD,t(σ) �= ∅.

The same assertion holds for insertions. That is, for all t
and n BI,t (π)∩BI,t (σ) �= ∅ for π, σ ∈ Sn if and only if there
exist t − 1 permutations τ (1), . . . , τ (t−1) ∈ Sn , such that

BI (τ
(i)) ∩ BI (τ

(i+1)) �= ∅,
for 0 � i � t − 1, while τ (0) = π and τ (t) = σ .

144 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 1, JANUARY 2016

Lastly, since single insertions and deletions are equivalent
(Lemma 18), we deduce that BD,t(π) ∩ BD,t(σ) �= ∅ if and
only if BI,t (π) ∩ BI,t (σ) �= ∅.

The next corollary follows directly from Theorem 19.
Corollary 20: For all t � 1, C is a t-PID-correcting code

if and only if it is a t-PII-correcting code.

VI. BOUNDS ON PII/PID BALLS

In this section, we establish a relationship between our
notion of PIIs and PIDs and the theory of permutation patterns.
We quote certain results from the existing literature on permu-
tation patterns; these results compute the sizes of PII and PID
balls. Based on these results, we then produce an asymptotic
upper bound on the size of a code that is capable of correcting
a single PID.

There is a wealth of literature on the subject of permutation
patterns, e.g., [16], [21]. Most works are concerned with
determining which permutations, of any length, avoid certain
small permutations. Here, by avoid, we mean that a permuta-
tion must not have any positions whose ordering induces the
smaller permutation. A related problem was recently studied
by Homberger [10]. This work introduces a series of results
regarding the number of permutations patterns contained in
larger permutations of fixed size. These results are quite useful
for the study of PIIs and PIDs. We cite several theorems from
this work. First, we define the concept of consecutive runs:

Definition 21: For a permutation π = (π1, . . . , πn) ∈ Sn,
a consecutive run is a substring of maximal length in π
that contains consecutively valued symbols, increasing or
decreasing.

For example, if π = (1, 5, 4, 3, 2) ∈ S5, then π has 2
consecutive runs: (1) and (5, 4, 3, 2).

In general, we note that the size of the PID ball BD(π)
depends on the permutation π . However, this size can be
characterized solely as a function of the number of consecutive
runs in π . Following [10], we also introduce the notion of
permutation bonds. We say that a pair of consecutive elements
(vi , vi+1) in a vector v (1 � i � n − 1) is a bond if
|vi − vi+1| = 1. Observe that a consecutive run of length
k in a permutation is made up of k − 1 bonds.

Note that if π j and πk are part of the same consecutive run
in π , deleting either π j or πk will yield the same permutation.
That is π↓,π j = π↓,πk . For a permutation π ∈ Sn , we denote
by R(π) the number of consecutive runs in π and by C(π) the
number of bonds in π . Using these observations, the following
result immediately follows from [10, Th. 6].

Theorem 22: For all π ∈ Sn, |BD(π)| = R(π) = n−C(π).
Before we proceed to derive our upper bound on the max-

imum PID-correcting code cardinality AP I D(n), we briefly
discuss the subject of insertions. Recall that when working
with sequences, the size of insertion balls does not depend on
the sequence x, as shown by Levenshtein in [18]. Surprisingly,
the analogous result does not hold for permutations. That is,
in general, the size of the t-PII ball |BI,t (π)| is a function
of π . However, in the single PII case t = 1, the PII ball
size |BI (π)|, does not depend on the permutation π . We have
the following simple formula, given in [10]: For all π ∈ Sn ,
|BI (π)| = n2 + 1.

The case t = 1 is the sole case where the PII balls are of
equal size. We have that, for example, |BI,2(1, 2, 3, 4)| = 207
while |BI,2(1, 3, 4, 2)| = 208. The following table illustrates
how different permutations of length 4 may have different size
PII balls for t > 1 [3]:

�����t
π

(1,2,3,4) (1,3,2,4) (1,3,4,2)

1 17 17 17
2 207 207 208
3 2279 2278 2300

We are ready to proceed with our computation of the upper
bound on AP I D(n). Ideally, we would first like to compute
the number of permutations π ∈ Sn with r consecutive
runs, so that R(π) = r . However, it turns out that this is a
challenging quantity to compute. Using an approach similar
to the Goulden-Jackson method [22], Homberger derives a
generating function for the number of permutations with k
bonds in [10]. Let an,k be the number of permutations π ∈ Sn

which contain exactly k bonds. We set a0,0 = 1. Then,

∑
n�0

∑
k�0

an,kznuk =
∑
m�0

m!
(

z + 2z2(u − 1)

1− z(u − 1)

)m

.

Since R(π) = n − C(π), in principle, we could obtain our
desired values from the generating function above. However,
working with this function is quite difficult. Instead, we will
rely on an upper bound. We introduce some useful terminol-
ogy. For positive integers n, r where r < n, define

F(n, r) =
(

n − 1

r − 1

)
· 2min{r,n−r} · r !. (8)

Lemma 23: The number of permutations in Sn with r
(1 � r � n) consecutive runs is at most F(n, r).

Proof: Consider the set of permutations in Sn that contain
r consecutive runs. We proceed by over-counting this quantity.
We first partition the elements from [n] into r consecutive runs.
This is equivalent to computing the number of solutions to the
problem

∑r
j=1 t j = n, where t j � 1 and each t j is an integer.

There are
(n−1

r−1

)
such solutions.

If r � n
2 then there can be at most r consecutive runs of

length greater than one. Each consecutive run can be either
increasing or decreasing and so there are at most 2r ways to
re-arrange the numbers within each consecutive run. If r > n

2
then there are at most n−r consecutive runs of length greater
than one. In this case there are 2n−r ways to re-arrange the
numbers within each consecutive run. Then, if we permute
each (block of symbols that constitute each) consecutive run
we have at most (

n − 1

r − 1

)
· 2min{r,n−r} · r !

permutations in Sn with r consecutive runs.
To simplify the notation, we assume that n is a power of two

so that the floors and ceilings can be dropped for convenience.
We assume that all log functions are base 2.

We also need the following claim and lemma.
Claim 24: For 2 � r � n − log(n), F(n, r − 1) � F(n, r).

GABRYS et al.: CODES CORRECTING ERASURES AND DELETIONS FOR RANK MODULATION 145

Proof: It is easy to see that F(n, r − 1) � F(n, r) is
equivalent to the statement

r − 1

n − r + 1
· 2min{r−1,n−r+1} � 2min{r,n−r} · r. (9)

We proceed by casework. First, if r � n − r , then r − 1 �
n − r − 1 < n − r + 1, so (9) reduces to r−1

n−r+1 � 2r . The
left-hand side is smaller than 1, so this inequality clearly holds
for r � 2.

The next case is r = n − r + 1. Then, r > n − r while
r − 1 < n − r + 1. (9) now reduces to r−1

n−r+1 � 2n−2r+1 · r .
Since n − 2r + 1 = 0 and n − r + 1 = r , (9) is equivalent to
r−1
r2 � 1, which is true when r � 2.

Finally we have the case r � n − r + 2. Since n − r < r
and n − r + 1 � r − 1, we must show that r−1

n−r+1 · 2 � r , or,
equivalently, 2(1− 1

r) � (n−r+1). Now, (n−r+1) � log(n)+
1 � 2 for n � 2, so, since r � n − log n, the result holds.

Lemma 25: For n � 4, the number of permutations
in Sn with at most n − log(n) consecutive runs is at
most n!(n−log(n))2

(log(n))! .

Proof: From Claim 24, the maximum number of permu-
tations in Sn with no more than n − log(n) consecutive runs
is at most

∑n−log(n)
r=1 F(n, r) �

∑n−log(n)
r=1 F(n, n − log(n)).

Substituting the expression for F(n, n− log(n)) from (8) gives
that there are at most

(n − log(n)) ·
(

n − 1
n − log(n)− 1

)
· 2log(n) · (n − log(n))!

= n!(n − log(n))2

(log(n))!
permutations in Sn with at most n − log(n) consecutive
runs.

Now we are ready to apply the preceding results to state
the main theorem in this section. Using a similar approach as
in [18], we provide an upper bound for the maximum size of
a single-deletion-correcting code AP I D(n).

Theorem 26: For any 0 < ε < 1 there exists an Nε such
that for all n � Nε , with n a power of two, AP I D(n) �

n!
n(n−log(n)) (1+ ε).

Proof: Suppose C is a single PID-correcting code over Sn .
Let S1 = {π ∈ Sn : |BD(π)| > n − log(n)}. We first consider
an upper bound on |C ∩ S1|. Since for all π ∈ C ∩ S1 the sets
BD(π) ⊆ Sn−1 are disjoint, and since |BD(π)| > n − log(n),
we get,

|C ∩ S1| � (n − 1)!
n − log(n)

.

Let S2 = {π ∈ Sn : |BD(π)| � n − log(n)}. Clearly, |C ∩
S2| � |S2| and from Lemma 25, |S2| � n!(n−log(n))2

(log(n))! . Thus, we
have

|C| = |C ∩ S1| + |C ∩ S2| � (n − 1)!
n − log(n)

+ n!(n − log(n))2

(log(n))!
= n!

n(n − log(n))

(
1+ n(n − log(n))3

(log(n))!
)

.

We conclude that AP I D(n) � n!
n(n−log(n))

(
1+ n(n−log(n))3

(log(n))!
)

.

Lastly, since limn→∞ n(n−log(n))3

(log(n))! = 0, there exists an Nε such

that for all n � Nε , we have AP I D(n) � n!
n(n−log(n)) (1 + ε),

as desired.

VII. CODE CONSTRUCTION

In this section, we introduce an asymptotically optimal
construction of single-PID-correcting codes. We prove the cor-
rectness of the construction and discuss a decoding algorithm.

A. Permutation Matrices, Signatures, and Runs

A permutation matrix is a square binary matrix such that
in each row and each column there is precisely one 1. For a
permutation π = (π1, . . . , πn) ∈ Sn , the permutation matrix
of π is a permutation matrix M = f (π) such that Mij = 1
if j = πi . Notice that if M is an n × n permutation matrix,
then there exists a unique permutation π such that M = f (π).
Hence, the mapping f is invertible. We denote its inverse by
f −1 and write f −1(f (π)) = π . The next claim follows from
Definition 1.

Claim 27: For π ∈ Sn, the matrix f (π↓,π j) is the result of
removing row j and column π j from f (π). Furthermore, if
row j and column π j are removed from f (π) thus resulting
in M ′, then π↓,π j = f −1(M ′).

Recall the mapping known as the signature, which was
previously introduced in Section IV-C. For convenience, we
restate the definition. For y ∈ [m]n, the binary length-(n − 1)
signature α(y) = (α(y)1, . . . , α(y)n−1) is defined as follows.
For 1 � i � n − 1,

α(y)i =
{

1, if yi+1 � yi .

0, otherwise.
(10)

Recall that for a permutation π = (π1, . . . , πn) ∈ Sn , the
inverse permutation π−1 = (π−1

1 , . . . , π−1
n) ∈ Sn is such that

for i ∈ [n], π−1
i is the location of the element i in π . It is

straightforward to verify that the permutation of the transpose
of f (π) corresponds to the inverse permutation for π . In other
words, we have f (π−1) = (f (π))T . For shorthand, we will
refer to the signature of the inverse permutation as the inverse
signature. The next example illustrates a signature and an
inverse signature.

Example 28: Suppose π = (1, 3, 5, 4, 2) ∈ S5. Then
α(π) = (1, 1, 0, 0). Furthermore, π−1 = (1, 5, 2, 4, 3) ∈ S5
and α(π−1) = (1, 0, 1, 0).

We are now ready to prove the following lemma.
Lemma 29: For π ∈ Sn, we have (π↓,π j)

−1 = (π−1)↓, j .
Proof: From Claim 27, if the symbol π j (where j ∈

[n]) is deleted from π , then the permutation matrix f (π↓,π j)
is the result of removing row j and column π j from f (π).
Alternatively, we can obtain (f (π↓,π j))

T by removing row π j

and column j from (f (π))T . From Claim 27, removing row
π j and column j from (f (π))T corresponds to the deletion
of symbol j from π−1 since f −1((f (π))T) = π−1.

In the following, if x ∈ G F(2)n is a binary vector, we
denote by BD(x) the set of all possible vectors obtainable by
deleting one bit from x.3

3That is, this is a deletion ball resulting from a single deletion to a binary
sequence.

146 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 1, JANUARY 2016

If a symbol from a permutation π is deleted, then a bit
from its signature, α(π), is deleted as well. That is, α(π↓,x) ∈
BD(α(π)). Hence, an immediate consequence of Lemma 29
is the following.

Corollary 30: Let π ∈ Sn and j ∈ [n]. Then α(π↓,π j) ∈
BD(α(π)) and α((π↓,π j)

−1) ∈ BD(α(π−1)).
A binary code is called a binary single-deletion-correcting

code if it can correct any single-bit deletion. As a result of
Corollary 30, in the next subsection we will leverage binary
single-deletion-correcting codes which will be invoked over
the signature and inverse signature of permutations in order to
construct single-PID-correcting codes for permutations.

In the rest of this subsection, we define runs in permutations
and binary sequences and present a claim that will be useful
in the next subsection.

Definition 31: For a binary sequence s, a run is a maximal-
length substring of s that is all-zero or all-one. For a permuta-
tion π , an ascending run is a maximal substring of π whose
values are increasing and a descending run is a maximal
substring of π whose values are decreasing. A substring of π
is a run if it is an ascending or a descending run.

Example 32: Continuing with the setup from Example 28,
let π = (1, 3, 5, 4, 2) ∈ S5 and α(π) = (1, 1, 0, 0). Notice
that the signature of a permutation reflects the structure of the
runs in the permutation. For example, the first three symbols
in π comprise an ascending run and so the first two symbols of
α(π) are ones. Similarly, the final three symbols in π comprise
a descending run and so the final two symbols in α(π) are
zeros.

The following claim is straightforward to verify.
Claim 33: Consider a permutation π ∈ Sn where n � 2

and its signature α(π). There is an ascending run starting at
position i and ending at position j+1 in π if and only if there
is a run of ones starting at position i and ending at position
j in α(π). Furthermore, if α(σ) can be obtained by deleting
a 1 from the run in α(π) which begins in position i and ends
in position j of α(π), then we can conclude that there exists
a permutation σ = π↓,x where x is at position k in π and
i � k � j + 1. A similar statement holds for descending runs
and a deletion of 0.

B. Code Construction

Let us first review the binary single-deletion-correcting code
we will use in our construction. Namely, the code from [18],
initially introduced in [25], known as a Varshamov-Tennegolts
code (VT code), is defined as follows. For a positive integer
n � 2 and a ∈ Zn+1, Ca

n is the code Ca
n = {x ∈ G F(2)n :∑n

i=1 i xi ≡ a mod n + 1}.
Lemma 34 (See [18], [25]): For any integer n � 2 and a ∈

Zn+1, the code Ca
n is a binary single-deletion-correcting code.

We are now ready to present our code construction of single-
PID-correcting codes over permutations.

Construction 35: Given an integer n > 2 and a1, a2 ∈ Zn ,
let

Ca1,a2
n = {

π ∈ Sn : α(π) ∈ Ca1
n−1, α(π−1) ∈ Ca2

n−1

}
. (11)

We first comment on the cardinality of the codes Ca1,a2
n .

Recall from the previous section that AP I D(n) represents the

Algorithm 2 DECODE
input : the retrieved permutation σ
output: the deleted symbol x

1 compute α(σ) and α(σ−1) from σ ;

2 α(π)←− VTDEC(α(σ));
3 d ←− deleted element of α(π);
4 i ←− start of run of deleted element in α(π);
5 j ←− end of run of deleted element in α(π);

6 α(π−1)←− VTDEC(α(σ−1));
7 e←− deleted element of α(π−1);
8 p←− start of run of deleted element in α(π−1);
9 q ←− end of run of deleted element in α(π−1);

10 if d = 1 and e = 1 then
11 S ←− {

σi , . . . , σ j
} ∩ {p, . . . , q};

12 if S = ∅ then
13 if σ−1 (q) < i then x ←− q + 1;
14 else if σ−1 (p) > j then x ←− p;
15 else Find x ∈ {p + 1, . . . , q} such that

σ−1 (x − 1) < i and σ−1 (x) > j ;
16 else x ←− min S;
17 else if d = 1 and e = 0 then
18 if σ−1 (p) < i then x ←− p;
19 else if σ−1 (q) > j then x ←− q + 1;
20 else Find x ∈ {p + 1, . . . , q} such that σ−1 (x) < j

and σ−1 (x − 1) > j ;
21 else
22 · · ·/* Essentially similar to the case

of d = 1 */
23 end

maximum cardinality of a single-PID-correcting code. Note
that the codes Ca1,a2

n for a1, a2 ∈ Zn partition the space Sn

into n2 mutually disjoint codes. Hence, if we denote by R(n)
for n > 2 the maximum cardinality of a code according to
Construction 35, that is, R(n) = maxa1,a2∈Zn {|Ca1,a2

n |}, then
applying the pigeonhole principle gives the following.

R(n) � n!
n2 .

Then, applying our bound on AP I D(n) from Theorem 26
yields the result,

Corollary 36: Construction 35 is asymptotically optimal,
that is,

lim
n→∞

R(n)

AP I D(n)
= 1.

We continue by proving the correctness of Construction 35.
The decoding algorithm for the construction is presented as
Algorithm 2. We show that Algorithm 2 can correct a single
PID. For simplicity, for a permutation σ , we use x ≺σ y if
and only if σ−1 (x) < σ−1 (y).

Theorem 37: For n > 2 and a1, a2 ∈ Zn, the code Ca1,a2
n is

a single-PID-correcting permutation code.
Proof: Suppose that π ∈ Ca1,a2

n and that σ = π↓,x for
some x ∈ [n]. We show that π is uniquely identifiable from σ .
To do this, we first identify the runs in σ and σ−1 from which

GABRYS et al.: CODES CORRECTING ERASURES AND DELETIONS FOR RANK MODULATION 147

elements were deleted and show that there is a unique way to
increase the length of these runs by an insertion in a consistent
way.

Let k denote the position of x in π , that is, we have π =
σ↑,x,k . From the received permutation σ , we compute α (σ).
Corollary 30 implies that α(σ) ∈ BD(α(π)). Using a decoder
for a VT code, we find α (π) from α (σ) since there is a
deletion that converts α (π) to α (σ). By comparing α(π) and
α(σ), we find the run endpoints i and j of Claim 33. Hence,
πi , πi+1, . . . , π j+1 form a run in π . Without loss of generality,
assume that this run is an ascending run, or equivalently, the
deleted element in α(π) is a 1. Thus, by Claim 33, π = σ↑,x,k

such that

i � k � j + 1, (12)

σi < σi+1 < · · · < σ j , (13)

x � σm iff k � m for m ∈ {i, . . . , j}. (14)

By Lemma 29, we have σ−1 = (π−1)↓,k and π−1 =(
σ−1

)↑,k,x
. We thus may apply Claim 33 to π−1. Let the

corresponding values of i and j of the claim be denoted by p
and q , respectively, for this case. The claim implies that the
substring π−1

p , π−1
p+1, . . . , k, . . . , π−1

q , π−1
q+1 is a run in π−1

and that p � x � q + 1.
The values of p and q can be determined from α

(
σ−1

)
as follows. By Claim 33 and using a decoder for a VT
code, we find α

(
π−1

)
from α

(
σ−1

)
since there is a deletion

that converts α
(
π−1

)
to α

(
σ−1

)
. We then find p and q by

comparing α
(
π−1

)
and α

(
σ−1

)
.

Now we have determined the ranges of possible values for
x and k. We use the combination of these ranges to specify x
and k.

There are two different cases depending on the deleted
element of α

(
π−1

)
being a 1 or a 0. We only consider the

former case; the latter follows using the same idea. Suppose
that a 1 in a run of 1s in α

(
π−1

)
is deleted. We have

π−1
p < π−1

p+1 < · · · < k < · · · < π−1
q < π−1

q+1 and thus

x ∈ {p, p + 1, . . . , q + 1}, (15)

p ≺σ p + 1 ≺σ · · · ≺σ q, (16)

k � σ−1 (y) iff x � y for y ∈ {p, . . . , q}, (17)

where p ≺σ p + 1 denotes that the symbol p appears before
the symbol p+1 in the permutation σ . Let S = {

σi , . . . , σ j
}∩

{p, . . . , q}. Suppose S is empty. Because σi , . . . , σ j is an
increasing run in σ and p, p + 1, . . . , q is an increasing
subsequence in σ , we have that one of the following cases
holds: a) σ−1 (q) < i ; b) σ−1 (p) > j ; or c) σ−1 (z − 1) < i
and σ−1 (z) > j for some z ∈ {p + 1, . . . , q}. Note that if
cases a) and b) do not hold, then q > p and so the set
{p + 1, . . . , q} used in case c) is nonempty.

We consider each case separately: First, in case a),
from (12), we have σ−1 (q) < k, which using (17) implies
that x > q . From (15), we find x = q + 1. Next, in
case b), similarly to case a), from (12), (17), and (15), we
have x = p. Lastly, in case c), from (12) it follows that
σ−1 (z − 1) < k � σ−1 (z). Using (17), we find that x = z.
Hence, we can identify x if S is empty. Having identified x , we

can find the unique position k in {i, . . . , j + 1} that satisfies
condition (14).

Now suppose S is nonempty and take u to be the smallest
element in S and v to be the largest element in S. From (13)
and (16), it is not difficult to show that every integer between
u and v is also in S, i.e.,

S = {u, u + 1, . . . , v},
and that the elements of S form a consecutive run in σ . Based
on (12)–(17), it is straightforward (but tedious) to see that the
set of possible values for x is exactly {u, u + 1, . . . , v, v + 1}
and that k = σ−1(x) if u � x � v and k = σ−1(v) + 1 if
x = v + 1. Furthermore, with the aforementioned values for
x and k, the resulting permutation σ↑,x,k is the same; it is a
permutation in which the length of the consecutive run formed
by the element of S is increased by 1. Thus π is determined
uniquely.

We illustrate the preceding proof by the following example.
Example 38: Consider the code Ca1,a2

8 , where a1 = 0
and a2 = 2. Suppose the stored codeword is π =
(7, 4, 5, 6, 8, 2, 1, 3) ∈ C0,2

8 , and the retrieved permutation is
σ = π↓,5 = (6, 4, 5, 7, 2, 1, 3). The decoder is given σ , a1,
and a2, and from these it computes

α(σ) = (0, 1, 1, 0, 0, 1),

α(σ−1) = (0, 1, 0, 1, 0, 1),

and, using the decoders Dn
a1

and Dn
a2

, computes

α(π) = (0, 1, 1, 1, 0, 0, 1),

α(π−1) = (0, 1, 0, 1, 1, 0, 1).

We thus have i = 2, j = 4, p = 4, and q = 5. Furthermore,
S = {4, 5, 7} ∩ {4, 5} = {4, 5}, implying that x ∈ {4, 5, 6}.
Hence, the possible pairs of values for (x, k) are (4, 2), (5, 3),
and (6, 4). Note that π = σ↑,4,2 = σ↑,5,3 = σ↑,6,4, and so
the decoding is successful.

VIII. CONCLUSION

In this work, we explored the problem of dealing
with erasures and deletions in rank modulation systems.
Specifically, we gave four error models: symbol-invariant
erasures (SIEs), permutation-invariant erasures (PIEs),
symbol-invariant deletions (SIDs), and permutation-invariant
deletions (PIDs). These models select between erasures and
deletions and between symbol-invariance, where unaffected
symbols do not change value, and permutation-invariance,
where these symbols change value in such a way that the
final result remains a permutation. We showed that for the
SIE model, codes over the Hamming metric are sufficient.
Next, we showed that the SID and PIE models are equivalent
and related by permutation inverses. In addition, we proved
that the Ulam distance is the appropriate metric for correcting
SIDs or PIEs. Furthermore, we gave a new construction of
codes in the Ulam metric that, in certain cases, has larger
cardinality than the best-known codes.

We also studied the more difficult model of PID errors.
We gave the basic properties of such errors and showed
that certain aspects of PIDs are equivalent to problems

148 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 1, JANUARY 2016

in permutation patterns. We computed an upper bound
on the size of the largest code capable of correcting a
single PID. We then introduced an asymptotically optimal sin-
gle PID-correcting code construction along with an associated
decoding algorithm.

Lastly, we note that most of our results are asymptotic and
the study of these codes for smaller length is left for future
research.

APPENDIX A
PROOF OF LEMMA 14

We first revisit some notation from Section IV-C before
proceeding to the proof of the lemma. Let AH (n, t) be the
maximum size of a code of length n over Sn with Hamming
distance at least t . Recall from Section IV-C,

AF S M(n, t) =
k∏

i=1

AH

(⌈ n

2i

⌉
− 1,

3t

2

)
, (18)

where k =
log2
n

3t/2+1�, and

AC V (n, t) =
s∑

j=0

u j∏
i=1

AH

(⌈n − j (3t + 1)

2i

⌉
− 1,

3t

2

)
, (19)

where s =
⌊

n
3t+1

⌋
and u j =

⌊
log2

n− j (3t+1)
3t/2+1

⌋
for j ∈ [0, s],

and

ANew(n, t) = ((2n
t)!)t/2

(n + 1)
3t
2 −4(2n/t)t/2

.

Lemma 14: For sufficiently large n where n+ 1 is a prime,
t|2n, and t � 6, ANew(n, t) > AF S M(n, t) and ANew(n, t) >
AC V (n, t).

Proof: Clearly AC V (n, t) � AF S M (n, t) and so we only
need to prove that ANew(n, t) > AC V (n, t) for appropriate
values of n and t .

Since log m! � m log (m/e), we find

log ANew (n, t) � t

2

(
2n

t

)
log

2n

te

−
(

3t

2
− 4

)
(log(n + 1))− t

2
log

2n

t

= n log n − n log
te

2
+ O (log n) . (20)

From [9, Th. 4], we have

AH (m, u) � m!
(u − 1)! .

Using this upper bound on AH (m, u), we find

AC V (n, t) � n

log n
3t/2+1 �∏

i=1

� n
2i − 1�!

(3t/2− 1)! ·

Thus,

log AC V (n, t) �

log n

3t/2+1 �∑
i=1

log
((n

2i

)
!
)
+ O(log n)

�

log n

3t/2+1 �∑
i=1

log
(√

2πen(n/2i)n/2i
e−n/2i

)
+ O(log n), (21)

where we have used m! �
√

2πem (m/e)m (for large
enough m) we drop floors and ceilings for convenience.
We use (21) to write

log AC V (n, t) �

log n

3t/2+1 �∑
i=1

n

2i
log

n

2i
−

log n

3t/2+1 �∑
i=1

n

2i
log e

+ O
(
(log n)2

)

�

log n

3t/2+1 �∑
i=1

n

2i
(log n − i)

− n log e

log n
3t/2+1 �∑

i=1

2−i + O
(
(log n)2

)

= n log n

log n
3t/2+1 �∑

i=1

2−i − n

log n
3t/2+1 �∑

i=1

i2−i

− n log e

log n
3t/2+1 �∑

i=1

2−i + O
(
(log n)2

)
.

Since log n
3t/2+1−1 �
log n

3t/2+1� � log n
3t/2+1 ,

∑x
i=1 2−i =

1 − 2−x , and
∑x

i=1 i2−i = 2 − (2 + x) 2−x , where the latter
two expressions hold for any positive integer x , we have

log AC V (n, t) � n log n

(
1− 3t + 2

2n

)

−
(

(2(n − 2)− (3t + 2) log
n

3t + 2
− 6t

)

− n log e + 3t log e + O
(
(log n)2

)
= n log n − (2+ log e) n + O

(
(log n)2

)
.

From this and (20), we bound the difference between code
sizes as

log Anew(n, t)− log AC V (n, t) � n log
8

t
+ O

(
(log n)2

)
.

Recall that by construction, (19) holds when t is even. Hence,
log Anew(n, t) − log AC V (n, t) > 0 for n sufficiently large
when t � 6.

APPENDIX B
PROOFS OF CLAIMS AND LEMMAS FROM SECTION V

Claim 16: Let π = (π1, . . . , πn) ∈ Sn , s, t ∈ [n] and
suppose that s < t . Then (π↓,s)↓,t−1 = (π↓,t)↓,s .

Proof: Suppose s = π j and t = πk where j, k ∈ [n]
and for now we assume that j < k. From (4), we can write

GABRYS et al.: CODES CORRECTING ERASURES AND DELETIONS FOR RANK MODULATION 149

σ = π↓,π j where σ = (σ1, . . . , σ j−1, σ j+1, . . . , σn) ∈ Sn−1,
and the elements σi for 1 � i � n (i �= j) are such that
σi = πi if πi < s and σi = πi − 1 otherwise. Since t > s, the
symbol (t − 1) appears in position (k− 1) in σ . Thus, we can
write σ (2) = (π↓,s)↓,t−1 = σ↓,πk−1 = σ↓,σk where

σ (2) = (σ
(2)
1 , σ

(2)
j−1, σ

(2)
j+1, . . . , σ

(2)
k−1, σ

(2)
k+1, . . . , σ

(2)
n) ∈ Sn−2,

and for 1 � i � n,

σ
(2)
i =

⎧⎪⎨
⎪⎩

πi , if πi < s

πi − 1, if s < πi < t

πi − 2, otherwise.

Let ζ = π↓,t = (ζ1, . . . , ζk−1, ζk+1, . . . , ζn) ∈ Sn−1, and
the elements ζi for 1 � i � n are such that ζi = πi if πi < t
and ζi = πi − 1 otherwise. Since t > s and j < k, ζ j = s.
Under this setup, it follows that ζ↓,s = (π↓,t)↓,s = σ (2) =
(π↓,s)↓,t−1.

The proof for the case where j > k is identical and so the
details are omitted.

Claim 17: Let π ∈ Sn and j, k, s, t ∈ [n + 1] such that
s � t . Then,
• If j < k, then (π↑,s, j)↑,t+1,k+1 = (π↑,t,k)↑,s, j .
• If j > k, then (π↑,s, j)↑,t+1,k = (π↑,t,k)↑,s, j+1.
• If j = k and s < t , then (π↑,s, j)↑,t+1, j = (π↑,t, j)↑,s, j+1.

Proof: We first show that for the case where j < k,
(π↑,s, j)↑,t+1,k+1 = (π↑,t,k)↑,s, j . From (7), we can write σ =
π↑,s, j = (σ1, . . . , σ j−1, s, σ j+1, . . . , σn) ∈ Sn+1 where for
1 � i � n, we have σi = πi if πi < s and σi = πi + 1
otherwise. Thus, since j < k and s � t , we can write σ (2) =
(π↑,s, j)↑,t+1,k+1 = σ↑,t+1,k+1 where

σ (2) = (σ
(2)
1 , . . . , σ

(2)
j−1, s, σ (2)

j , . . . , σ
(2)
k−1, t + 1,

σ
(2)
k , . . . , σ (2)

n) ∈ Sn+2,

and for 1 � i � n,

σ
(2)
i =

⎧⎪⎨
⎪⎩

πi , if πi < s

πi + 1, if s � πi < t

πi + 2, otherwise.

Repeating similar steps, σ (2) = (π↑,t,k)↑,s, j =
π↑,s, j)↑,t+1,k+1.

We now consider the case where j > k. In this case
let j ′ = k and k ′ = j . Then we need to show that if
j ′ < k ′, then (π↑,s,k′)↑,t+1, j ′ = (π↑,t, j ′)↑,s,k′+1. Using
similar ideas as before we can write ζ = π↑,s,k′ =
(ζ1, . . . , ζk′−1, s, ζk′ , . . . , ζn) ∈ Sn+1 where for 1 � i � n, we
have ζi = πi if ζi < s and ζi = πi + 1 otherwise. Then, since
j ′ < k ′ and s � t , we have ζ (2) = ζ↑,t+1, j ′ = (π↑,s,k′)↑,t+1, j ′

where

ζ (2) = (ζ
(2)
1 , . . . , ζ

(2)
j ′−1, t + 1, ζ

(2)
j ′ ,

. . . , ζ
(2)
k′−1, s, ζ (2)

k′ , . . . , ζ (2)
n) ∈ Sn+2,

and for 1 � i � n,

ζ
(2)
i =

⎧⎪⎨
⎪⎩

πi , if πi < s

πi + 1, if s � πi < t

πi + 2, otherwise.

Repeating similar steps, we have ζ (2) = (π↑,t, j ′)↑,s,k′+1 =
(π↑,s,k′)↑,t+1, j ′ .

We now consider the case where j = k and s < t . Then
we can write τ = (π↑,s, j)↑,t+1, j where

τ = (τ1, . . . , τ j−1, t + 1, s, τ j , . . . , τn) ∈ Sn+2,

and for 1 � i � n,

τi =

⎧⎪⎨
⎪⎩

πi , if πi < s

πi + 1, if s � πi < t

πi + 2, otherwise.

Since τ = (π↑,s, j)↑,t+1, j = (π↑,t, j)↑,s, j+1, the statement in
the claim holds.

ACKNOWLEDGEMENT

The authors thank two anonymous reviewers and the
Associate Editor Prof. Moshe Schwartz for their valuable
comments and suggestions.

REFERENCES

[1] A. Barg and A. Mazumdar, “Codes in permutations and error correc-
tion for rank modulation,” IEEE Trans. Inf. Theory, vol. 56, no. 7,
pp. 3158–3165, Jul. 2010.

[2] W. A. Beyer, M. L. Stein, and S. M. Ulam, “Metric in biol-
ogy, an introduction,” Univ. California, Los Alamos, NM, USA,
Tech. Rep. LA-4973, 1972.

[3] M. Bóna, “Exact enumeration of 1342-avoiding permutations: A close
link with labeled trees and planar maps,” J. Combinat. Theory, vol. 80,
no. 2, pp. 257–272, Nov. 1997.

[4] Y. M. Chee and V. K. Vu, “Breakpoint analysis and permutation codes in
generalized Kendall tau and Cayley metrics,” in Proc. IEEE Int. Symp.
Inf. Theory, Honolulu, HI, USA, Jun./Jul. 2014, pp. 2959–2963.

[5] M. Deza and T. Huang, “Metrics on permutations: A survey,”
J. Combinat. Inf. Syst. Sci., vol. 23, pp. 173–185, 1998.

[6] R. Gabrys, E. Yaakobi, F. Farnoud, and J. Bruck, “Codes correcting
erasures and deletions for rank modulation,” in Proc. IEEE Int. Symp.
Inf. Theory, Honolulu, HI, USA, Jun./Jul. 2014, pp. 2759–2763.

[7] R. Gabrys, E. Yaakobi, F. Farnoud, F. Sala, J. Bruck, and L. Dolecek,
“Single-deletion-correcting codes over permutations,” in Proc. IEEE Int.
Symp. Inf. Theory, Honolulu, HI, USA, Jun./Jul. 2014, pp. 2764–2768.

[8] F. Farnoud, V. Skachek, and O. Milenkovic, “Error-correction in flash
memories via codes in the Ulam metric,” IEEE Trans. Inf. Theory,
vol. 59, no. 5, pp. 3003–3020, May 2013.

[9] P. Frankl and M. Deza, “On the maximum number of permutations with
given maximal or minimal distance,” J. Combinat. Theory, A, vol. 22,
no. 3, pp. 352–360, 1977.

[10] C. Homberger, “Counting fixed-length permutation patterns,” Online J.
Anal. Combinat., vol. 7, Nov. 2012.

[11] A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck, “Rank modulation for
flash memories,” IEEE Trans. Inf. Theory, vol. 55, no. 6, pp. 2659–2673,
Jun. 2009.

[12] A. Jiang, M. Schwartz, and J. Bruck, “Correcting charge-constrained
errors in the rank-modulation scheme,” IEEE Trans. Inf. Theory, vol. 56,
no. 5, pp. 2112–2120, May 2010.

[13] M. Kendall and J. D. Gibbons, Rank Correlation Methods. New York,
NY, USA: Oxford Univ. Press, 1990.

[14] M. Kim, J. K. Park, and C. M. Twigg, “Rank modulation hardware for
flash memories,” in Proc. IEEE 55th Int. Midwest Symp. Circuits Syst.,
Aug. 2012, pp. 294–297.

[15] M. Kim, M. Shaterian, and C. M. Twigg, “Rank determination algorithm
by current comparing for rank modulation flash memories,” in Proc.
IEEE 56th Int. Midwest Symp. Circuits Syst., Aug. 2013, pp. 1354–1357.

[16] S. Kitaev, Patterns in Permutations and Words. New York, NY, USA:
Springer-Verlag, 2011.

[17] A. Klein, “On perfect deletion-correcting codes,” J. Combinat. Designs,
vol. 12, no. 1, pp. 72–77, Nov. 2003.

[18] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions and reversals,” Soviet Phys. Doklady, vol. 10, pp. 707–710,
Feb. 1966.

150 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 1, JANUARY 2016

[19] V. I. Levenshtein, “On perfect codes in deletion and insertion metric,”
Discrete Math. Appl., vol. 3, no. 1, pp. 3–20, 1991.

[20] Y. Li, Y. Ma, E. E. Gad, M. Kim, A. Jiang, and J. Bruck, “Implementing
rank modulation,” in Proc. Non-Volatile Memory Workshop (NVMW),
Mar. 2015, pp. 1–2.

[21] S. Linton, N. Ruškuc, and V. Vatter, Permutation Patterns. Cambridge,
U.K.: Cambridge Univ. Press, 2010.

[22] J. Noonan and D. Zeilberger, “The Goulden–Jackson cluster method:
Extensions, applications and implementations,” J. Difference Equ. Appl.,
vol. 5, nos. 4–5, pp. 355–377, 1999.

[23] K. H. Rosen, Discrete Mathematics and Its Applications. London, U.K.:
Chapman & Hall, 2004.

[24] G. M. Tenengolts, “Nonbinary codes, correcting single deletion or
insertion (Corresp.),” IEEE Trans. Inf. Theory, vol. 30, no. 5,
pp. 766–769, Sep. 1984.

[25] R. R. Varshamov and G. M. Tenengolts, “Codes which correct sin-
gle asymmetric errors,” Avtomatika Telemekhanika, vol. 6, no. 2,
pp. 288–292, 1965.

[26] H. Zhou, A. Jiang, and J. Bruck, “Systematic error-correcting codes for
rank modulation,” in Proc. IEEE Int. Symp. Inf. Theory, Cambridge,
MA, USA, Jul. 2012, pp. 2978–2982.

Ryan Gabrys received the B.S. degree in mathematics and computer
science from the University of Illinois at Champaign-Urbana in 2005.
He holds M.Eng. and Ph.D. degrees in electrical engineering from the
University of California at San Diego and the University of California at
Los Angeles, respectively. Since 2005, he has worked at Space and Naval
Warfare Systems Center San Diego developing future naval system capabili-
ties. His research interests include coding theory and its applications to storage
and communications.

Eitan Yaakobi (S’07–M’12) is an Assistant Professor at the Computer
Science Department at the Technion Israel Institute of Technology.
He received the B.A. degrees in computer science and mathematics, and the
M.Sc. degree in computer science from the Technion — Israel Institute of
Technology, Haifa, Israel, in 2005 and 2007, respectively, and the Ph.D. degree
in electrical engineering from the University of California, San Diego, in 2011.
Between 2011-2013, he was a postdoctoral researcher in the department of
Electrical Engineering at the California Institute of Technology. His research
interests include information and coding theory with applications to non-
volatile memories, associative memories, data storage and retrieval, and voting
theory. He received the Marconi Society Young Scholar in 2009 and the Intel
Ph.D. Fellowship in 2010-2011.

Farzad Farnoud is a postdoctoral scholar at the California Institute of Tech-
nology. He received his MS degree in Electrical and Computer Engineering
from the University of Toronto in 2008. From the University of Illinois at
Urbana-Champaign, he received his MS degree in mathematics and his PhD
in Electrical and Computer Engineering in 2012 and 2013, respectively. His
research interests include the informationtheoretic and algorithmic analysis of
genomic evolutionary processes, ranking-based information processing, and
coding for flash memory. He is a recipient of the Robert T. Chien Memorial
Award for demonstrating excellence in research in electrical engineering from
the University of Illinois at Urbana-Champaign.

Frederic Sala received the B.S.E. degree in Electrical Engineering from the
University of Michigan, Ann Arbor, in 2010 and the M.S. degree in Electrical
Engineering from the University of California, Los Angeles (UCLA) in 2013.
He is currently pursuing the Ph.D. degree in Electrical Engineering at UCLA,
where he is associated with the LORIS and CoDESS labs.

His research interests include information theory and coding with a focus
on error-correction codes, including applications to synchronization and data
storage in non-volatile memories. He is a recipient of the NSF Graduate
Research Fellowship and the UCLA Edward K. Rice Outstanding Masters
Student Award.

Jehoshua Bruck (S’86–M’89–SM’93–F’01) is the Gordon and Betty Moore
Professor of computation and neural systems and electrical engineering at the
California Institute of Technology (Caltech). His current research interests
include information theory and systems and the theory of computation in
nature.

Dr. Bruck received the B.Sc. and M.Sc. degrees in electrical engineering
from the Technion-Israel Institute of Technology, in 1982 and 1985, respec-
tively, and the Ph.D. degree in electrical engineering from Stanford University,
in 1989. His industrial and entrepreneurial experiences include working with
IBM Research where he participated in the design and implementation of
the first IBM parallel computer; cofounding and serving as Chairman of
Rainfinity (acquired in 2005 by EMC), a spin-off company from Caltech
that created the first virtualization solution for Network Attached Storage; as
well as cofounding and serving as Chairman of XtremIO (acquired in 2012
by EMC), a start-up company that created the first scalable all-flash enterprise
storage system.

Dr. Bruck is a recipient of the Feynman Prize for Excellence in Teaching,
the Sloan Research Fellowship, the National Science Foundation Young
Investigator Award, the IBM Outstanding Innovation Award and the IBM
Outstanding Technical Achievement Award.

Lara Dolecek (S’05–M’10–SM’12) is an Associate Professor with
the Electrical Engineering Department at the University of California,
Los Angeles (UCLA). She holds a B.S. (with honors), M.S. and Ph.D.
degrees in Electrical Engineering and Computer Sciences, as well as an
M.A. degree in Statistics, all from the University of California, Berkeley. She
received the 2007 David J. Sakrison Memorial Prize for the most outstanding
doctoral research in the Department of Electrical Engineering and Computer
Sciences at UC Berkeley. Prior to joining UCLA, she was a postdoctoral
researcher with the Laboratory for Information and Decision Systems at
the Massachusetts Institute of Technology. She received IBM Faculty Award
(2014), Northrop Grumman Excellence in Teaching Award (2013), Intel Early
Career Faculty Award (2013), University of California Faculty Development
Award (2013), Okawa Research Grant (2013), NSF CAREER Award (2012),
and Hellman Fellowship Award (2011). She is an Associate Editor for Coding
Theory for IEEE TRANSACTIONS ON COMMUNICATIONS and served as
an associate editor for IEEE COMMUNICATION LETTERS and as the lead
guest editor for 2014 IEEE JSAC special issue on emerging data storage
systems. Her research interests span coding and information theory, graphical
models, statistical algorithms, and computational methods, with applications
to emerging systems for data storage, processing, and communication. She is
a Senior Member of IEEE.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

