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An Axiomatic Approach to Constructing Distances
for Rank Comparison and Aggregation
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Abstract— We propose a new family of distance measures
on rankings, derived through an axiomatic approach, that
consider the nonuniform relevance of the top and bottom of
ordered lists and similarities between candidates. The proposed
distance functions include specialized weighted versions of the
Kendall τ distance and the Cayley distance, and are suitable for
comparing rankings in a number of applications, including
information retrieval and rank aggregation. In addition to
proposing the distance measures and providing the theoretical
underpinnings for their applications, we also analyze algorithmic
and computational aspects of weighted distance-based rank
aggregation. We present an aggregation method based on approx-
imating weighted distance measures by a generalized version
of Spearman’s footrule distance as well as a Markov chain
method inspired by PageRank, where transition probabilities of
the Markov chain reflect the chosen weighted distances.

Index Terms— Weighted Kendall distance, positional rele-
vance, top-vs-bottom, similarity, rank aggregation, information
retrieval, statistics, collaborative filtering, PageRank.

I. INTRODUCTION

BECAUSE of their data reduction properties, independence
of scale, and ease of acquisition and representation,

ordinal data structures and rankings have gained significant
attention as information representation formats, with diverse
applications in statistics [1]–[3], information retrieval [4], [5],
social choice theory [6]–[8], coding theory [9], [10], recom-
mender systems [11], and bioinformatics [12].

Most applications of rank processing call for a suitable
notion of distance: In statistics, many variants of distance mea-
sures are used to measure correlation between rankings [1].
In information retrieval, distances are used for evaluating the
accuracy of search engine results, and for comparing and
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aggregating them in the form of metasearch engine lists.
In collaborative filtering, distances on rankings are used to
measure similarity of preference lists [13], while in cod-
ing theory, they are used for assessing leakage errors and
rank modulation error-correcting code construction [9], [14].
In distance-based rank aggregation, distances on rankings are
central to finding aggregates or representatives of rankings,
whose quality and applicability depends on the properties of
the chosen distance measure [6], [15], [16].

One of the most commonly used distances on rankings is
the Kendall τ distance [1], which is defined as the smallest
number of swaps of adjacent elements that transform one
ranking into the other. For example, the Kendall τ distance
between the rankings (1, 3, 4, 2) and (1, 2, 3, 4) is two; we
may first swap 2 and 4 and then 2 and 3. Besides its use in
social choice theory [6] and computer science [16], the Kendall
τ distance has also received significant attention in the coding
theory literature due to its applications in modulation coding
for flash memories [9], [14].

Despite the significant role of distance measures on rank-
ings in ordinal data processing, the Kendall τ and other
conventional distances have significant shortcomings which
impair their wide-scale use in practice [5], [17]–[19]; namely,
they do not take into account the varying relevance of dif-
ferent positions in the rankings – for example they ignore
the fact that top of a ranking is typically more important
than other positions – nor do they consider the similari-
ties and dissimilarities between items in the rankings. In
this work, we present new families of distance measures
to resolve these issues and study their application to rank
aggregation. While application-wise our focus in this paper
is mainly on the rank aggregation problem, the proposed
distance measures are nevertheless useful in a variety of areas
such as statistics, collaborative filtering, and search engine
evaluation.

The problem of rank aggregation can be succinctly
described as follows: a set of “voters” or “experts” is presented
with a set of candidates (objects, individuals, movies, etc.).
Each voter’s task is to produce a ranking, that is, an arrange-
ment of the candidates in which the candidates are ranked
from the most preferred to the least preferred. The voters’
rankings are then passed to an aggregator, which outputs a
single ranking, termed the aggregate ranking, to be used as a
representative of all votes. Rank aggregation has applications
in many fields including the social sciences, web search
and Internet service studies, bioinformatics, expert opinion
analysis, and economics [6], [16], [19]–[22].
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A number of rank aggregation methods have been proposed
in the past, including score-based approaches and distance-
based approaches. In score-based methods, the first variant
of which was proposed by Borda [23], each candidate is
assigned a score based on its position in each of the rankings.
The candidates are then ordered based on their total score.
One argument in support of Borda’s method is that it ranks
highly those candidates supported at least to a certain extent by
almost all voters, rather than candidates who are ranked highly
only by a majority of voters. In distance-based methods [6],
the aggregate is defined as the ranking “closest” to the set of
votes, or equivalently, at the smallest cumulative distance from
the votes. Closeness of two rankings is measured via some
adequately chosen distance function. Well-known distance
measures for rank aggregation include the Kendall τ and
Spearman’s Footrule distance [24].

The choice of the distance has a significant effect on
the quality and properties of the outcome of distance-based
rank aggregation. This makes the problem of choosing an
appropriate distance for rank aggregation applications both
practically important and technically challenging. To address
this issue, Kemeny [6], [25] presented a set of intuitively
justifiable axioms that a distance measure must satisfy to be
deemed suitable for aggregation purposes, and showed that
only one distance measure satisfies these axioms – namely,
the Kendall τ distance. Kemeny’s set of axioms is the starting
point of our construction of distances.

A. Related Work

The shortcomings of conventional distance measures have
been noted by a number of authors, and various solutions to
overcome the underlying issues were subsequently reported
in [5], [17]–[19], [26], and [27]. In [18], Shieh presented
a measure of discordance between permutations that is a
generalization of the Kendall τ metric. The measure, however,
is not symmetric and thus not a distance function – which
introduces a number of conceptual problems. Yilmaz et al. [5]
proposed a probabilistic distance measure, which in fact can be
shown to be a special case of Shieh’s metric [28]. A heuristic
approach for addressing the top versus bottom problem was
also proposed by Kumar et al. [19]. Sun et al. introduced a
weighted version of Spearman’s footrule in [29]. The problem
of comparing the top k elements, where k is a certain positive
integer, was studied by Fagin et al. [30] and in a more general
context in [31]. There, the authors introduce a modification of
the Kendall τ metric, which again is not a distance function.
More recently, Vigna [32] proposed a weighted correlation
measure on rankings with ties. In addition to being able
to handle ties, which are prevalent in many applications,
this correlation measure has the advantage of fast compu-
tation (O(n log n), where n is the length of the rankings).
In the context of sorting and rearrangement for applications
in bioinformatics, the authors of the present work studied
the weighted transposition distances in terms of finding the
minimum cost of sorting a permutation with cost-constrained
transpositions [33]. The related problem of sorting and selec-
tion when comparisons have random costs is studied in [34]
and references therein. Additionally, a distance measure taking

similarities of candidates into consideration was described
in [21], but with a goal opposite to ensuring diversity – the
underlying distance provides heuristic guarantees that similar
items are ranked close to each other in the aggregate ranking.

Our work differs from all the aforementioned contributions
in two fundamental aspects. First, we rigorously derive and
justify a family of distance measures based on a set of rational
axioms, similar in essence to those used by Kemeny [6] to
define the Kendall τ . Second, the distance measures proposed
here have a level of intuitiveness and generality not matched
by any previously known distance measure: the distances
can be associated with adjacent and non-adjacent swaps, and
can incorporate different information regarding the relevance
of positions or properties of the elements to be ranked.
In addition, unlike most of the aforementioned previous work,
the distance measures presented here are inherently true met-
rics and are thus symmetric, thereby eliminating the need for
choosing one ranking as ground truth or symmetrizing the
distances. Furthermore, despite their generality, the proposed
distances can be approximated or computed exactly in poly-
nomial time, depending on the weights associated with the
swaps. These computational performance guarantees allow for
integrating the distance measures into various existing and
some newly developed rank aggregation schemes [6], [16].
As a result, besides their applications in computer science
and social choice theory, the developed distance measures
may be used in a variety of other applications, ranging from
bioinformatics to network analysis [12], [33].

B. Outline of Paper

The paper is organized as follows. We explain the motiva-
tion for our work in more detail in Section II. An overview
of relevant concepts, definitions, and terminology is presented
in Section III. In Section IV, we discuss Kemeny’s set of
axioms. More specifically, we start by showing that the set of
axioms used by Kemeny in [6] to define a distance on weak
orders is redundant for linear orders. We then relax and modify
Kemeny’s axioms in Section V to prove that there is a unique
family of distances, termed weighted Kendall distances, that
satisfy the modified set of axioms. Furthermore, we describe
how weighted Kendall distances can address a shortcoming of
conventional distances by reflecting the varying importance of
different positions in rankings. While computing the weighted
Kendall distances between two permutations appears to be
a difficult task in general, for the important special case
of monotone weights we present an efficient algorithmic
solution. Furthermore, for the general model, we present
a 2-approximation. We also illustrate the effect of using
weighted Kendall distances as opposed to the Kendall τ in
solving rank aggregation problems.

Weighted transposition distances are analyzed in detail in
Section VI. These distances can take into account information
about the similarity of candidates. Computing the weighted
transposition distance also appears to be a difficult task.
We present a 4-approximation for the general case, and
a 2-approximations for specialized metric weights. We further
show that for so called metric-path distances, the exact
distance may be computed in polynomial time.
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Section VII studies rank aggregation with weighted dis-
tances. There, we describe the performance of an algorithm
for rank aggregation based on a generalization of Spearman’s
footrule distance and using a minimum weight matching
problem (this algorithm is inspired by a procedure described
in [16]) and a combination of the matching algorithm with
local descent methods. Furthermore, we describe an algorithm
reminiscent of PageRank [16], where the “hyperlink probabil-
ities” are chosen according to weights.

II. MOTIVATION

A. Top vs. Bottom

Consider the ranking π of the “World’s 10 best cities to
live in”, according to a report composed by the Economist
Intelligence Unit [35]:

π = (Melbourne, Vienna, Vancouver, Toronto, Calgary,

Adelaide, Sydney, Helsinki, Perth, Auckland)

Now consider two other rankings that both differ from π by
one swap of adjacent entries:

π ′ = (Melbourne, Vienna, Vancouver, Calgary, Toronto,

Adelaide, Sydney, Helsinki, Perth, Auckland),

π ′′ = (Vienna, Melbourne, Vancouver, Toronto, Calgary,

Adelaide, Sydney, Helsinki, Perth, Auckland).

The astute reader probably immediately noticed that the top
candidate was changed in π ′′, but otherwise took some time
to realize where the adjacent swap appeared in π ′. This is a
consequence of the well-known fact that humans pay more
attention to the top of the list rather than any other location
in the ranking, and hence notice changes in higher positions
easier.1 Note that the Kendall τ distance between π and π ′
and between π and π ′′ is one, but it would appear reasonable
to require that the distance between π and π ′′ be larger than
that between π and π ′, as the corresponding swap occurred
in a more significant (higher ranked) position in the list.

The second example corresponds to the well-studied notion
of Click-through rates (CTRs) of webpages in search engine
results pages (SERPs). The CTR is used to assess the popu-
larity of a webpage or the success rate of an online ad. It may
be roughly defined as the number of times a link is clicked on
divided by the total number of times that it appeared. A recent
study by Optify Inc. [36] showed that the difference between
the average CTR of the first (highest-ranked) result and the
average CTR of the second (runner-up) result is very large,
and much larger than the corresponding difference between the
average CTRs of the lower ranked items (See Figure 1). Hence,
in terms of directing search engine traffic, swapping higher-
ranked adjacent pairs of search results has a larger effect on the
performance of Internet services than swapping lower-ranked
search results.

1Note that one may argue that people are equally drawn to explore the
highest and lowest ranked items in a list. For example, if about a hundred
cities were ranked, it would be reasonable to assume that readers would be
more interested in knowing the best and worst ten cities, rather than the
cities occupying positions 41 to 60. These positional differences may also be
addressed within the framework proposed in the paper.

Fig. 1. Click-through rates (CTRs) of webpages appearing on the first page
of Google search.

The aforementioned findings should be considered when
forming an aggregate ranking of webpages. For example, in
studies of CTRs, one is often faced with questions regarding
traffic flow from search engines to webpages. One may think
of a set of keywords, each producing a different ranking
of possible webpages, with the aggregate representing the
median ranking based on different sets of keywords. Based
on Figure 1, if the ranking of a webpage is in the bottom half,
its exact position is not as relevant as when it is ranked in the
top half. Furthermore, a webpage appearing roughly half of the
time at the top and roughly half of the time at the bottom will
generate more incoming traffic than a webpage with persistent
average ranking.

Throughout the paper, we refer to the aforementioned
problem as the “top-vs-bottom” problem. To address this
problem, we propose distances that penalize perturbations
at the top of the list more than those at the bottom of
the list by assigning different weights to swaps in different
positions. These distances have another important application
in practice – eliminating negative outliers. As will be shown
in subsequent sections, top-vs-bottom distance measures allow
candidates to be highly ranked in the aggregate even though
they have a certain (small) number of highly negative ratings.
The policy of eliminating outliers before rating items or
individuals is a well-known one, but has not been considered
in the social choice literature in the context of distance-based
rank aggregation.

B. Similarity of Candidates

In many vote aggregation problems, the identities and
characteristics of candidates are unknown or unimportant and
all candidates are treated equally. On the other hand, many
other applications require that the identities of the candidates
be revealed. In the latter case, candidates are frequently
partitioned in terms of some similarity criteria – for example,
area of expertise, gender, working hour schedule, etc. Hence,
pairs of candidates may have different degrees of similarity
and swapping candidates that are similar should be penalized
less than swapping candidates that are not similar.

Pertaining to the Economist Intelligence Unit ranking,
it may be observed that the swap in π ′′ involves cities on
two different continents, which may shift the general opinion
about the cities’ countries of origin. On the other hand, the
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two cities swapped in π ′ are both in Canada, so that the swap
is not likely to change the perception of quality of living in
that country. This example also points to the need for distance
measures that take into account similarities and dissimilarities
among candidates.

The similarity problem may be addressed through the use
of a generalization of the Cayley distance between two rank-
ings. The Cayley distance is the smallest number of (not
necessarily adjacent) swaps required to transform one ranking
into the other. For example, the Cayley distance between
the permutations (1, 2, 3, 4) and (1, 4, 3, 2) is one, since the
former can be transformed into the latter by swapping the
elements 2 and 4. In contrast to the Kendall τ distance
that allows for swaps of adjacent elements only, the Cayley
distance allows for arbitrary swaps. Similarity of items may be
captured by assigning costs or weights to swaps, and choosing
the weights so that swapping dissimilar items induces a higher
weight/distance compared to swapping similar items. This
approach is the topic of Section VI.

III. PRELIMINARIES

Formally, a ranking is a list of candidates arranged in order
of preference, with the first candidate being the most preferred
and the last candidate being the least preferred.

Consider the set of all possible rankings of a set of n
candidates. Via an arbitrary, but fixed, injective mapping from
the set of candidates to {1, 2, . . . , n} = [n], each ranking
may be represented as a permutation. The mapping is often
implicit and we usually equate rankings of n candidates with
permutations in Sn , where Sn denotes the set of permuta-
tions of [n]. This is equivalent to assuming that the set of
candidates is the set [n]. For notational convenience, we use
Greek lower-case letters for permutations (except the identity
permutation), and explicitly write permutations as ordered sets
σ = (σ (1), . . . , σ (n)).

The identity permutation (1, 2, . . . , n) is denoted by e. For
two permutations π, σ ∈ Sn , the product μ = πσ is defined
by the equation μ(i) = π(σ(i)), i = 1, 2, · · · n.

Definition 1: A transposition τ = (a b), for a, b ∈ [n] and
a �= b, is a permutation that swaps a and b and keeps all other
elements of e fixed. That is, τ (a) = b, τ (b) = a, and τ (i) = i
for i /∈ {a, b}. If |a − b| = 1, the transposition is referred to
as an adjacent transposition.

Note that for π ∈ Sn , π (a b) is obtained from π by swap-
ping elements in positions a and b, and (a b) π is obtained
by swapping a and b in π . For example, (3, 1, 4, 2)(2 3) =
(3, 4, 1, 2) and (2 3)(3, 1, 4, 2) = (2, 1, 4, 3).

For our future analysis, we define the set

A(π, σ ) = {
τ = (

τ1, . . . , τ|τ |
):

σ = πτ1 · · · τ|τ |, τi = (ai ai + 1) , i ∈ [|τ |]},
i.e., the set of all ordered sequences of adjacent transpositions
that transform π into σ. The fact that A(π, σ ) is non-empty,
for any π, σ ∈ Sn , is obvious. Using A(π, σ ), the Kendall
τ distance between two permutations π and σ , denoted by
K (π, σ ), may be written as

K (π, σ ) = min
τ∈A(π,σ )

|τ |.

For a ranking π ∈ Sn and a, b ∈ [n], π is said to rank a
before b or higher than b if π−1(a) < π−1(b). We denote
this relationship as a <π b. Two rankings π and σ agree
on the relative order of a pair {a, b} of elements if both
rank a before b or both rank b before a. Furthermore, the
two rankings π and σ disagree on the relative order of a pair
{a, b} if one ranks a before b and the other ranks b before a.
For example, consider π = (1, 2, 3, 4) and σ = (4, 2, 1, 3).
We have that 4 <σ 1 and that π and σ agree on {2, 3} but
disagree on {1, 2}.

Given a distance function d over the permutations in Sn

and a set � = {σ1, . . . , σm} of m votes (rankings), the
distance-based aggregation problem can be stated as follows:
find the ranking π∗ that minimizes the cumulative distance
from �, i.e.,

π∗ = arg min
π∈Sn

m∑

i=1

d(π, σi ). (1)

In words, the goal is to find a ranking π that represents
the median of the set of permutations �. The choice of the
distance function d is an important aspect of distance-based
rank aggregation and the focus of the paper.

IV. THE REDUNDANCY OF KEMENY’S AXIOMS

In [6], Kemeny presented a set of axioms that a distance
function appropriate for rank aggregation should satisfy and
proved that the only distance that satisfies the axioms is the
Kendall τ . In what follows, we state the axioms and prove
through a sequence of results that the postulates are redundant
for linear orders.

A critical concept in Kemeny’s axioms is the idea of
“betweenness,” defined next.

Definition 2: A ranking ω is said to be between two
rankings π and σ , denoted by π–ω–σ , if for each pair
of elements {a, b}, ω agrees with π or σ or both. The
rankings π1, π2, . . . , πs are said to be on a line, denoted by
π1–π2– · · · –πs , if for every i, j, and k for which 1 ≤ i < j <
k ≤ s, we have πi –π j –πk .

In Kemeny’s derivations, rankings were allowed to have
ties. The basis of our subsequent analysis is the same set
of axioms, listed in what follows. However, our focus is on
rankings without ties, or in other words, on permutations.

Axioms I
1) d is a metric.
2) d is left-invariant.
3) For any π, σ, and ω, d(π, σ ) = d(π, ω) + d(ω, σ ) if

and only if ω is between π and σ .
4) The smallest positive distance is one.
Axiom I.2 states that relabeling of objects should not

change the distance between permutations. In other words,
d(σπ, σω) = d(π, ω), for any π, σ, ω ∈ Sn . Axiom I.3 may
be viewed through a geometric lens: the triangle inequality
has to be satisfied with equality for all points that lie on a
line between π and σ . Axiom I.4 is used for normalization
purposes.

Kemeny’s original exposition included a fifth axiom which
we state for completeness: If two rankings π and σ agree



FARNOUD AND MILENKOVIC: AXIOMATIC APPROACH TO CONSTRUCTING DISTANCES 6421

except on a segment of k elements, the position of the
segment does not affect the distance between the rankings.
Here, a segment represents a set of objects that are ranked
consecutively – i.e., a substring of the permutation. As an
example, this axiom implies that

d((1, 2, 3, 4, 5, 6︸ ︷︷ ︸), (1, 2, 3, 6, 5, 4︸ ︷︷ ︸))

= d((1, 4, 5, 6︸ ︷︷ ︸, 2, 3), (1, 6, 5, 4︸ ︷︷ ︸, 2, 3))

where the segment is underscored by braces. This axiom
clearly enforces a property that is not desirable for metrics
designed to address the top-vs-bottom issue: changing the
position of the segment in two permutations does not alter
their mutual distance. One may hence assume that removing
this axiom (as was done in Axioms I) will lead to distance
measures capable of handling the top-vs-bottom problem. But
as we show, for rankings without ties, omitting this axiom
does not change the outcome of Kemeny’s analysis. In other
words, the axiom is redundant. This is a rather surprising fact,
and we conjecture that the same is true of rankings with ties.

The main result of this section is Theorem 1, which states
that the unique distance satisfying Axioms I is the Kendall
τ distance. In other words, the result establishes that for
rankings without ties, Kemeny’s fifth axiom is redundant. The
theorem is proved with the help of Lemmas 1 and 2. Specif-
ically, Lemma 1 shows that as a consequence of Axiom I.3,
all adjacent transpositions have the same distance to the
identity. This fact is used in Lemma 2 to prove that a distance
that satisfies Axioms I, simply counts the minimum number
of adjacent transpositions needed to transform one permu-
tation into another, establishing the uniqueness statement of
Theorem 1.

Lemma 1: For any d that satisfies Axioms I, the distance
between all adjacent transpositions and the identity is the
same. That is, for i ∈ [n − 1], we have d ((i i + 1) , e) =
d ((1 2), e) .

Proof: We show that d ((2 3) , e) = d ((1 2) , e). Repeating
the same argument used for proving this special case gives
d ((i i + 1) , e) = d ((i − 1 i) , e) = · · · = d ((1 2) , e).

To show that d ((2 3) , e) = d ((1 2) , e), we evaluate d(π, e)
in two ways, where we choose π = (3, 2, 1, 4, 5, . . . , n).

On the one hand, note that π–ω–η–e, where ω = π(1 2) =
(2, 3, 1, 4, 5, . . . , n) and η = ω(2 3) = (2, 1, 3, 4, 5, . . . , n).
As a result,

d(π, e) = d(π, ω)+ d(ω, η) + d(η, e)

= d(ω−1π, e)+ d(η−1ω, e)+ d(η, e)

= d((1 2), e)+ d((2 3), e)+ d((1 2), e) (2)

where the first equality follows from Axiom I.3, while
the second is a consequence of the left-invariance property
(Axiom I.2) of the distance measure.

On the other hand, note that π–α–β–e, where α = π(2 3) =
(3, 1, 2, 4, 5, . . . , n) and β = α(1 2) = (1, 3, 2, 4, 5, . . . , n).
For this case,

d(π, e) = d(π, α) + d(α, β)+ d(β, e)

= d(α−1π, e)+ d(β−1α, e)+ d(β, e)

= d((2 3), e)+ d((1 2), e)+ d((2 3), e). (3)

Equations (2) and (3) imply d ((2 3) , e) = d ((1 2) , e). �
Lemma 2 (Uniqueness for Axioms I): For any d satisfying

Axioms I and for permutations π and σ , d(π, σ ) equals
K (π, σ ), i.e., the minimum number of adjacent transpositions
required to transform π into σ .

Proof: Let γ be any permutation. We first prove the lemma
for the special case of π = γ and σ = e. Let

L(π, σ ) = {τ = (
τ1, . . . , τ|τ |

) ∈ A(π, σ ) :
π–πτ1–πτ1τ2– · · · –σ }

be the subset of A(π, σ ) consisting of sequences of transposi-
tions that transform π into σ by passing through a line. Let s
be the minimum number of adjacent transpositions that trans-
form γ into e. Furthermore, let (τ1, τ2, . . . , τs) ∈ A(γ, e) and
define γi = γ τ1 · · · τi , i = 0, . . . , s, with γ0 = γ and γs = e.

First, we show γ0–γ1– · · · –γs , that is,

(τ1, τ2, . . . , τs) ∈ L(γ, e). (4)

Suppose this were not the case. Then, there exist i < j < k
such that γi , γ j , and γk are not on a line, and thus, there exists
a pair of integer values {r, s}, r �= s for which γ j disagrees
with both γi and γk . Hence, we have two transpositions,
τi ′ and τ j ′ , with i < i ′ ≤ j and j < j ′ ≤ k that swap r and s.
We can in this case remove τi ′ and τ j ′ from (τ1, . . . , τs)
to obtain

(
τ1, . . . , τi ′−1, τi ′+1, . . . , τ j ′−1, τ j ′+1, τs

) ∈ A(γ, e)
with length s − 2. This contradicts the optimality of the
choice of s. Hence, (τ1, τ2, . . . , τs) ∈ L(γ, e). Then, by using
Axiom I.3 inductively, we arrive at

d(γ, e) =
s∑

i=1

d(τi , e). (5)

Lemma 1 states that all adjacent transpositions have the
same distance from the identity. Since transpositions τi , 1 ≤
i ≤ s, in (5) are adjacent transpositions, d(τi , e) = a for some
a > 0 and thus d(γ, e) = sa.

In (5), the minimum positive distance is obtained when
s = 1. That is, the minimum positive distance from identity
equals a and is obtained when γ is an adjacent transposition.
Axiom I.4 states that the minimum positive distance is 1.
By left-invariance, this axiom implies that the minimum posi-
tive distance of any permutation from the identity is 1. Hence,
a = 1 and for any γ ∈ Sn ,

d(γ, e) =
s∑

i=1

d(τi , e) = sa = s,

which completes the proof of the special case. To prove the
claim for general π and σ it suffices to put γ = σ−1π and
use the left-invariance property. �

For π, σ ∈ Sn , let I (π, σ ) = {{i, j} : i <π j, j <σ i}
be the set of pairs {i, j} on which π and σ disagree. The
number |I (π, σ )| is usually referred to as the inversion number
between the two permutations π and σ . It is well known that

K (π, σ ) = |I (π, σ )| . (6)

Theorem 1: The unique distance d that satisfies Axioms I
is

d(π, σ ) = K (π, σ ).
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Proof: We only show that K satisfies Axiom I.3, as
proving that K satisfies the other axioms is straightforward.
Uniqueness follows from Lemma 2.

To show that K satisfies Axiom I.3, we use (6) stating that
K (π, σ ) = |I (π, σ )|. Fix π, σ ∈ Sn . For any ω ∈ Sn , it is
clear that

I (π, σ ) ⊆ I (π, ω) ∪ I (ω, σ ). (7)

Suppose first that ω is not between π and σ . Then there
exists a pair {a, b} with a <π b and a <σ b, but such that
a >ω b. Since {a, b} /∈ I (π, σ ) and {a, b} ∈ I (π, ω)∪I (ω, σ ),
we find that

|I (π, σ )| < |I (π, ω) ∪ I (ω, σ )| ,
and thus

K (π, σ ) = |I (π, σ )| < |I (π, ω) ∪ I (ω, σ )|
≤ |I (π, ω)| + |I (ω, σ )| = K (π, ω)+ K (ω, σ ).

Hence, if ω is not between π and σ , then

K (π, σ ) �= K (π, ω)+ K (ω, σ ).

Next, suppose ω is between π and σ . This immediately
implies that I (π, ω) ⊆ I (π, σ ) and I (ω, σ ) ⊆ I (π, σ ). These
relations, along with (7), imply that

I (π, ω) ∪ I (ω, σ ) = I (π, σ ). (8)

We claim that I (π, ω) ∩ I (ω, σ ) = ∅. To see this to be
true, observe that if {a, b} ∈ I (π, ω) ∩ I (ω, σ ), then the
relative rankings of a and b are the same for π and σ and
so, {a, b} /∈ I (π, σ ). The last statement contradicts (8) and
thus

I (π, ω) ∩ I (ω, σ ) = ∅. (9)

From (8) and (9), we may write

K (π, σ ) = |I (π, σ )| = |I (π, ω) ∪ I (ω, σ )|
= |I (π, ω)| + |I (ω, σ )| = d(π, ω)+ d(ω, σ ),

and this completes the proof of the fact that K satisfies
Axiom I.3. �

A distance d over Sn is called a graphic distance [37] if
there exists a graph G with vertex set Sn such that for π, σ ∈
Sn, d (π, σ ) is equal to the length of the shortest path between
π and σ in G. Note that this definition implies that the edge
set of G is the set

{(α, β) : α, β ∈ Sn, d (α, β) = 1}.
The Kendall τ distance is a graphic distance. To verify the

claim, take a graph with vertices indexed by permutations, and
an edge between each pair of permutations that differ by only
one adjacent transposition.

In the next section, we introduce the weighted Kendall
distance which may be viewed as the shortest path between
permutations over a weighted graph, and show how this
distance arises as the unique solution of a set of modified
Kemeny axioms.

V. THE WEIGHTED KENDALL DISTANCE

The proof of the uniqueness of the Kendall τ distance under
Axioms I, in particular, the proof of Lemma 1, reveals an
important insight: the Kendall τ distance arises due to the
fact that adjacent transpositions have uniform costs, which
is a consequence of the betweenness property described in
Axiom I.3. If one had a ranking problem in which weights of
transpositions either depended on the identity of the elements
involved or their positions, the uniformity assumption would
have to be changed.

To change the uniformity requirement of Kemeny’s axioms,
we redefine the betweenness axiom, as listed in Axioms II.

Axioms II

1) d is a pseudo-metric, i.e. a generalized metric in which
two distinct points may be at distance zero.

2) d is left-invariant.
3) For any π, σ disagreeing on more than one pair of

elements, there exists some ω, distinct from π and σ
and between them, such that d(π, σ ) = d(π, ω) +
d(ω, σ ).

Axiom II.1 allows for the possibility of assigning distance 0
to two distinct rankings that differ in an insignificant way.
Intuitively, Axiom II.3 states that there exists at least one
point on some line between π and σ , for which the triangle
inequality is an equality.

Definition 3: A distance dϕ is termed a weighted Kendall
distance if there exists a nonnegative weight function ϕ over
the set of adjacent transpositions such that

dϕ(π, σ ) = min
(τ1,...,τs )∈A(π,σ )

s∑

i=1

ϕτi ,

where ϕτi is the weight assigned to the adjacent transposition
τi by ϕ. The weight of a transform τ = (τ1, . . . , τs) is
denoted by wt (τ ) and is defined as wt(τ ) =∑s

i=1 ϕτi . Hence,
dϕ(π, σ ) may be written as

dϕ(π, σ ) = min
τ∈A(π,σ )

wt(τ ).

Similar to the Kendall τ , the weighted Kendall distance
is a graphic distance. The difference is that in the defining
graph corresponding to the weighted Kendall distance, edges
– which represent adjacent transpositions – are allowed to
have different weights. The shortest path is obtained with
respect to these weights, as illustrated in Figure 2. Note that
a weighted Kendall distance is completely determined by its
weight function ϕ.

Based on the aforementioned observations and definitions,
we prove next that Axioms II ensure the existence of a
unique family of distances, namely the weighted Kendall
distances. This result is captured in Theorem 2. In addition, we
demonstrate how an appropriately chosen weighted Kendall
distance provides a simple and natural solution to the top-vs-
bottom issue.

Theorem 2: A distance d satisfies Axioms II if and only if
it is a weighted Kendall distance.
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Fig. 2. The graphs for the Kendall τ distance (a), and weighted Kendall distance (b).

Proof: We first show that for any distance d that satisfies
Axioms II, and for distinct π and σ , we have

d(π, σ ) = min
(τ1,...,τs)∈A(π,σ )

s∑

i=1

d(τi , e). (10)

The proof uses induction on K (π, σ ), the Kendall τ distance
between π and σ . Suppose that K (π, σ ) = 1, i.e., that π and
σ disagree on one pair of adjacent elements. Then, we have
σ = π(a a + 1) for some a ∈ [n − 1]. By left-invariance of
d, it follows that d(π, σ ) = d((a a + 1) , e). We now show
that the right side of (10) also equals d((a a + 1) , e). For
every (τ1, . . . , τs) ∈ A(π, σ ), there exists an index j , such
that τ j = (a a + 1). This implies that

min
(τ1,...,τs)∈A(π,σ )

s∑

i=1

d(τi , e) ≥ d((a a + 1) , e). (11)

On the other hand, since ((a a + 1)) ∈ A(π, σ ),

min
(τ1,...,τs)∈A(π,σ )

s∑

i=1

d(τi , e) ≤ d((a a + 1) , e). (12)

From (11) and (12), it follows that the right side of (10)
also equals d((a a + 1) , e). Hence, equation (10) holds for
K (π, σ ) = 1.

Now, suppose that K (π, σ ) > 1, i.e., suppose that π and σ
disagree on more than one pair of elements, and that for all
μ, η ∈ Sn with K (μ, η) < K (π, σ ), the lemma holds. Then,
there exists an ω, distinct from π and σ and between them,
such that

d(π, σ ) = d(π, ω)+ d(ω, σ ),

K (π, ω) < K (π, σ ), K (ω, σ ) < K (π, σ ).

By the induction hypothesis, there exist (ν1, . . . , νk) ∈
A(π, ω) and (νk+1, . . . , νs) ∈ A(ω, σ ), for some s and k, such

that d(π, ω) =∑k
i=1 d(νi , e) and d(ω, σ ) =∑s

i=k+1 d(νi , e),
and thus

d(π, σ ) =
s∑

i=1

d(νi , e) ≥ min
(τ1,...,τs′)∈A(π,σ )

s ′∑

i=1

d(τi , e),

where the inequality follows from the fact that (ν1, . . . , νs) ∈
A(π, σ ). To complete the proof, note that by the triangle
inequality,

d(π, σ ) ≤ min
(τ1,...,τs′)∈A(π,σ )

s ′∑

i=1

d(τi , e).

It now immediately follows that a distance d satisfying
Axioms II is a weighted Kendall distance by letting ϕθ =
d(θ, e) for every adjacent transposition θ .

The proof of the converse is omitted since it is easy to verify
that a weighted Kendall distance satisfies Axioms II. �

The weighted Kendall distance provides a natural solution
for the top-vs-bottom issue. For instance, recall the example
of ranking cities, with

π = (Melbourne, Vienna, Vancouver, Toronto, Calgary,

Adelaide, Sydney, Helsinki, Perth, Auckland),

π ′ = (Melbourne, Vienna, Vancouver, Calgary, Toronto,

Adelaide, Sydney, Helsinki, Perth, Auckland),

π ′′ = (Vienna, Melbourne, Vancouver, Toronto, Calgary,

Adelaide, Sydney, Helsinki, Perth, Auckland),

and choose the weight function ϕ(i i+1) = 0.9i−1 for i =
1, 2, . . . , 9. Then, dϕ(π, π ′) = 0.94 = 0.66 < dϕ(π, π ′′) = 1
as expected.

In this case, we have chosen the weight function to be
exponentially decreasing in order to emphasize the importance
of high rankings. In general, the choice of the weight function
depends on the application at hand. For example, to evaluate
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aggregates of search results, one can consider the click-through
rates of different ranks and the effect of errors on directing
web traffic in order to identify adequate weights. For voting
applications, one would need to refer to experimental studies
describing how individuals perceive the values of different
ranks and how much they penalize errors in different positions
when evaluating the disagreement between their ranking and
an alternative. For applications in bioinformatics, the weights
are computed based on training data and cross-validation, as
described in our companion paper [12]. An in-depth study
of how one should choose the weights is out of the scope of
this paper.

We next turn our attention to the computational aspects
of weighted Kendall distances, addressed in Subsection V-A.
There, we describe an algorithm for computing the exact
weighted Kendall distances for a special, yet very impor-
tant case of a weight function (summarized in Algorithm 1
and Proposition 1). In Subsection V-B, we provide a
2-approximation algorithm for the case of general weights
(Proposition 2). We then proceed to illustrate the use of
these distances for rank aggregation via examples provided in
Subsection V-C, which show that unlike another aggregation
method that uses weights to solve the top-vs-bottom issue,
weighted Kendall aggregation usually satisfies the majority
criterion (Proposition 3).

A. Computing the Weighted Kendall Distance for
Monotonic Weight Functions

Computing the weighted Kendall distance between
two permutations for an arbitrary weight function is not as
straightforward a task as computing the Kendall τ distance.
However, in what follows, we show that for an important
class of weight functions – termed monotonic weight
functions – the weighted Kendall distance may be computed
efficiently.

Definition 4: A nonnegative weight function ϕ, defined on
the set of adjacent transpositions, is decreasing if i > j implies
that ϕ(i i+1) ≤ ϕ( j j+1). Increasing weight functions are defined
similarly. A weight function is monotonic if it is increasing or
decreasing.

Monotonic weight functions are of importance in the top-
vs-bottom model as they can be used to emphasize the signif-
icance of the top of the ranking by assigning higher weights
to transpositions at higher ranked positions. An example of a
decreasing weight function is the exponential weight described
in the previous subsection.

Suppose that τ = (
τ1, . . . , τ|τ |

)
of length |τ | trans-

forms π into σ . The transformation may be viewed as a
sequence of moves of elements i , i = 1, . . . , n, from posi-
tion π−1(i) to position σ−1(i). Let the walk followed by
element i while moved by the transform τ be denoted by
pi,τ =

(
pi,τ

1 , . . . , pi,τ
|pi,τ |+1

)
, where

∣
∣pi,τ

∣
∣ is the length of the

walk pi,τ .
For example, consider

π = (3, 2, 4, 1), σ = (1, 2, 3, 4),

τ = (τ1, τ2, τ3, τ4) = ((3 4), (2 3), (1 2), (2 3))

and note that σ = πτ1τ2τ3τ4. We have

p1,τ = (4, 3, 2, 1), p2,τ = (2, 3, 2),

p3,τ = (1, 2, 3), p4,τ = (3, 4).

We first bound the lengths of the walks pi,τ , i ∈ [n].
Let Ii (π, σ ) be the set consisting of elements j ∈ [n] such
that π and σ disagree on the pair {i, j}. In the transform τ ,
all elements of Ii (π, σ ) must be swapped with i by some
τk, k ∈ [|τ |]. Each such swap contributes length one
to the total length of the walk pi,τ and thus,

∣
∣pi,τ

∣
∣ ≥

|Ii (π, σ )|.
As before, let dϕ denote the weighted Kendall distance with

weight function ϕ. Since for any τ ∈ A(π, σ ),

|τ |∑

i=1

ϕτi =
n∑

i=1

1

2

∣
∣pi,τ

∣
∣

∑

j=1

ϕ
(pi,τ

j pi,τ
j+1)

,

we have

dϕ(π, σ ) = min
τ∈A(π,σ )

n∑

i=1

1

2

∣
∣pi,τ

∣
∣

∑

j=1

ϕ
(pi,τ

j pi,τ
j+1)

.

Thus,

dϕ(π, σ ) ≥
n∑

i=1

1

2
min

pi∈Pi (π,σ )

∣∣pi
∣∣

∑

j=1

ϕ(pi
j pi

j+1)
, (13)

where for each i , Pi (π, σ ) denotes the set of walks of length
|Ii (π, σ )|, starting from π−1(i) and ending in σ−1(i). For
convenience, let

pi,�(π, σ ) = arg min
pi∈Pi (π,σ )

∣
∣pi

∣
∣

∑

j=1

ϕ(pi
j pi

j+1)

be the minimum weight walk from π−1(i) to σ−1(i) with
length |Ii (π, σ )|.

If clear from the context, we write pi,�(π, σ ) as pi,�.
We show next that for decreasing weight functions, the

bound given in (13) is achievable and thus the value on the
right-hand-side gives the weighted Kendall distance for this
class of weight functions.

Consider π, σ ∈ Sn and a decreasing weight function ϕ.
For each i , it follows that pi,�(π, σ ) extends to positions
with largest possible indices, i.e., pi,� = (π−1(i), · · · ,
�i − 1, �i , �i − 1, . . . , σ−1(i)), where �i is the solution to the
equation

�i − π−1(i)+ �i − σ−1(i) = Ii (π, σ ),

and thus �i =
(
π−1(i)+ σ−1(i)+ Ii (π, σ )

)
/2.

We show next that there exists a transform τ � with pi,τ � =
pi,�, and so equality in (13) can be achieved. The transform
is described in Algorithm 1. The transform in question, τ �,
converts π to σ in n rounds. In Algorithm 1, the variable r
takes values σ(1), σ (2), . . . , σ (n), in that given order. For
each value of r , τ � moves r through a sequence of adjacent
transpositions from its current position in πt , π−1

t (r), to its
position σ−1(r).
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Algorithm 1 Find τ Monotone
Input: π, σ ∈ Sn

Output: τ � = arg minτ∈A(π,σ ) wt (τ )

1: π0 ← π

2: t ← 0
3: for r = σ(1), σ (2), . . . , σ (n) do
4: while π−1

t (r) > σ−1(r) do

5: τ �
t+1←

(
π−1

t (r)− 1 π−1
t (r)

)

6: πt+1← πtτ
�
t+1

7: t ← t + 1
8: end while
9: end for

Fix i ∈ [n]. For values of r , used in Algorithm 1, such
that σ−1(r) < σ−1(i), i is swapped with r via an adjacent
transposition if π−1(r) > π−1(i). For r = i , i is swapped
with all elements k such that π−1(k) < π−1(i) and σ−1(i) <
σ−1(k). For r such that σ−1(r) > σ−1(i), i is not swapped
with other elements. Hence, i is swapped precisely with ele-
ments of the set Ii (π, σ ) and thus, |pi,τ �

(π, σ )| = |Ii (π, σ )|.
Furthermore, it can be seen that, for each i , pi,τ �

(π, σ ) =
(π−1(i), . . . , �′i−1, �′i , �′i−1, . . . , σ−1(i)), for some �′i . Since
|pi,τ �

(π, σ )| = |Ii (π, σ )|, �′i also satisfies the equation

�′i − π−1(i)+ �′i − σ−1(i) = Ii (π, σ ),

implying that �′i = �i and thus pi,τ � = pi,�. Consequently,
one has the following result.

Proposition 1: For rankings π, σ ∈ Sn, and a decreasing
weighted Kendall weight function ϕ, we have

dϕ(π, σ ) =
n∑

i=1

1

2

⎛

⎝
�i−1∑

j=π−1(i)

ϕ( j j+1) +
�i−1∑

j=σ−1(i)

ϕ( j j+1)

⎞

⎠

where �i =
(
π−1(i)+ σ−1(i)+ Ii (π, σ )

)
/2.

Increasing weight functions may be analyzed
similarly.

Example 1: Consider the rankings π = (4, 3, 1, 2) and
e = (1, 2, 3, 4) and a decreasing weight function ϕ. We have
Ii (π, e) = 2 for i = 1, 2 and Ii (π, e) = 3 for i = 3, 4.
Furthermore,

�1 = 3+ 1+ 2

2
= 3, p1,� = (3, 2, 1),

�2 = 4 + 2+ 2

2
= 4, p2,� = (4, 3, 2),

�3 = 2 + 3+ 3

2
= 4, p3,� = (2, 3, 4, 3),

�4 = 1+ 4+ 3

2
= 4, p4,� = (1, 2, 3, 4).

Hence, the minimum weight transformation generated by the
algorithm is

τ � =
⎛

⎝(3 2), (2 1)︸ ︷︷ ︸
1

, (4 3), (3 2)︸ ︷︷ ︸
2

, (4 3)︸︷︷︸
3

⎞

⎠ ,

where the numbers under the braces denote the value r
corresponding to the indicated transpositions. The distance
between π and e equals

dϕ(π, e) = ϕ(1 2) + 2ϕ(2 3) + 2ϕ(3 4).
Example 2: The bound given in (13) is not tight for general

weight functions. Consider π = (4, 2, 3, 1), σ = (1, 2, 3, 4),
and a weight function ϕ with ϕ(1 2) = 2, ϕ(2 3) = 1, and
ϕ(3 4) = 2. We have

p1,� = (4, 3, 2, 1), p2,� = (2, 3, 2),

p3,� = (3, 2, 3), p4,� = (1, 2, 3, 4).

Suppose that a transform τ exists such that pi,� = pi,τ , i =
1, 2, 3, 4. From pi,�, it follows that in τ , transpositions
(1 2) and (3 4) each appear once and (2 3) appears twice.
It can be shown, by considering all possible re-orderings
of {(1 2), (1 2), (2 3), (2 3), (2 3)} or by an application of
[33, Lemma 5] that τ does not transform π into σ . Hence,
for this example, the lower bound (13) is not achievable.

The results of this subsection imply that for decreasing
weight functions, which capture the importance of the top
entries in rankings, computing the weighted Kendall distance
has time complexity O(n2). On the other hand, Knight [38]
described a method for computing the Kendall τ metric in time
O(n log n). More recently, Chan and Pătraşcu showed [39]
that this task can in fact be performed in time O(n

√
log n).2

While, there is a gap between the performance of the algorithm
given here and those for computing the Kendall τ metric, in
many applications, distance computation efficiency should not
impede the use of these weighted Kendall distances.

1) Weight Functions With Two Identical Non-Zero Weights:
In addition to monotone weights, we describe another example
of a weighted Kendall distance for which a closed form
solution exists. For a pair of integers a, b, 1 ≤ a < b < n,
define the weight function as:

ϕ(i i+1) =
{

1, i ∈ {a, b} ,
0, else.

(14)

Such weight functions may be used in aggregation prob-
lems where one penalizes moving a link from one page
(say, top-ten page) to another page (say, ten-to-twenty page).
In other words, one only penalizes moving an item from a
“high-ranked” set of positions to “average-rank” or “low-rank”
positions. An expression for computing the weighted Kendall
distance for this case is given in the Appendix (Section VII-B).

B. Approximating the Weighted Kendall Distance
for General Weight Functions

In what follows, we present a polynomial-time
2-approximation algorithm for computing the general form
of weighted Kendall distances, as well as two algorithms for
computing this distance exactly. While exact computations
may require super-exponential time complexity, for a small
number of candidates – say, less than 10 – the computation
can still be performed in reasonable time. A small number

2We thank Sebastiano Vigna for pointing out the references regarding the
time complexity of computing the Kendall τ to us.
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of candidates and a large number of voters are frequently
encountered in social choice applications, but less frequently
in computer science.

In order to approximate the weighted Kendall distance,
dϕ(π, σ ), we use the function Dϕ(π, σ ), defined as

Dϕ(π, σ ) =
n∑

i=1

w(π−1(i) : σ−1(i)), (15)

where

w(k : l) =

⎧
⎪⎨

⎪⎩

∑l−1
h=k ϕ(h h+1), if k < l,

∑k−1
h=l ϕ(h h+1), if k > l,

0, if k = l,

denotes the sum of the weights of adjacent transpositions
(k k + 1), (k + 1 k + 2), . . . , (l − 1 l), if k < l, the
sum of the weights of adjacent transpositions (l l + 1),
(l + 1 l + 2), . . . , (k − 1 k), if l < k, and 0, if k = l.

The following proposition states lower and upper bounds
for dϕ in terms of Dϕ . The proposition is useful in practice,
since Dϕ can be computed in time O(n2), and provides the
desired 2-approximation.

Proposition 2: For a weighted Kendall weight function
ϕ and for permutations π and σ ,

1

2
Dϕ(π, σ ) ≤ dϕ(π, σ ) ≤ Dϕ(π, σ ).

We omit the proof of the proposition, since it follows from a
more general result stated in the next section, and only remark
that the lower-bound presented in Proposition 2 is weaker than
the lower-bound given by (13).

Next, we discuss computing the exact weighted Kendall
distance via algorithms for finding minimum weight paths in
graphs. As already pointed out, the Kendall τ and the weighted
Kendall distance are graphic distances. In the latter case, we
define a graph G with the vertex set equal to Sn and an edge
of weight ϕ(i i+1), i ∈ [n − 1], between each pair of vertices
π and σ for which there exists an i such that π = σ(i i + 1).
The numbers of vertices and edges of G are |V | = n! and
|E | = n!(n − 1)/2, respectively. Dijkstra’s algorithm with
Fibonacci heaps [40] for finding the minimum weight path
in a graph provides the distances of all π ∈ Sn to the identity
in time O(|E | + |V | log |V |) = O(n! n log n).

One can actually show that the complexity of the algorithm
for finding the distance between π ∈ Sn and the identity equals
O(n(K (π, e))!), which is significantly smaller than �(n!)
for permutations at small Kendall τ distance. The minimum
weight path algorithm is based on the following observation.
For π in Sn , there exists a transform τ = (τ1, τ2, . . . , τm)
of minimum weight that transforms π into e, such that m =
K (π, e). In other words, each transposition of τ eliminates
one inversion when transforming π into e. Hence, πτ1 has
one less inversion than π . As a result,

dϕ(π, e) = min
i:π(i)>π(i+1)

(
ϕ(i i+1) + dϕ(π(i i + 1), e)

)
. (16)

Note that the minimum is taken over all positions i for which
i and i + 1 form an inversion, i.e., for which π(i) > π(i + 1).
Suppose that computing the weighted Kendall distance

between the identity and a permutation π , with K (π, e) = d ,
can be performed in time Td . From (16), we have

Td = a n + d Td−1, for d ≥ 2,

and T1 = a n, for some constant a. By letting Ud =
Td/(a n d!), we obtain Ud = Ud−1 + 1

d ! , d ≥ 2, and U1 = 1.
Hence, Ud = ∑d

i=1
1
i! . It can then be shown that d!Ud =

�d!(e− 1)�, and thus Td = a n�d! (e − 1)� = O(nd!).
The expression (16) can also be used to find the distances

of all π ∈ Sn from the identity by first finding the distances
of permutations π ∈ Sn with K (π, e) = 1, then finding the
distances of permutations π ∈ Sn with K (π, e) = 2, and
so on.3 Unfortunately, the average Kendall τ distance between
a randomly chosen permutation and the identity is

(n
2

)
/2

(see the derivation of this known and a related novel result
regarding the weighted Kendall distance in the Appendix),
which limits the applicability of this algorithm to uniformly
and at random chosen votes.

C. Aggregation With Weighted Kendall
Distances: Examples

In order to explain the potential of the weighted Kendall
distance in addressing the top-vs-bottom aggregation issue, in
what follows, we present a number of examples that illustrate
how the choice of the weight function influences the final form
of the aggregate. We focus on decreasing weight functions
and compare our results to those obtained using the classical
Kendall τ distance.

Throughout the remainder of the paper, we refer to a
solution of the aggregation problem using the Kendall τ as
a Kemeny aggregate. All the aggregation results are obtained
via exhaustive search since the examples are small and only
used for illustrative purposes. Aggregation is, in general, a
hard problem and we postpone the analysis of the complexity
of computing aggregate rankings, and aggregate approximation
algorithms, until Section VII.

Example 3: Consider the set of rankings listed in �, where
each row represents a ranking (vote),

� =

⎛

⎜⎜
⎜
⎜
⎝

4 1 2 5 3
4 2 1 3 5
1 4 5 2 3
2 3 1 5 4
5 3 1 2 4

⎞

⎟⎟
⎟
⎟
⎠

.

The Kemeny optimal solution for this set of rankings is
(1, 4, 2, 5, 3). Note that despite the fact that candidate 4 was
ranked twice at the top of the list – more than any other
candidate – it is ranked only second in the aggregate. This
may be attributed to the fact that 4 was ranked last by two
voters.

Consider next the weight function ϕ(2/3) with ϕ
(2/3)
(i i+1) =

(2/3)i−1, i ∈ [4]. The optimum aggregate ranking for this
weight equals (4, 1, 2, 5, 3). The optimum aggregate based
on ϕ(2/3) puts 4 before 1, similar to what a plurality vote

3Note that such an algorithm requires that the set of permutations at a given
Kendall τ distance from the identity be known and easy to create/list.
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would do.4 The reason behind this swap is that ϕ(2/3) empha-
sizes strong showings of a candidate and downplays its weak
showings, since weak showings have a smaller effect on
the distance as the weight function is decreasing. In other
words, higher ranks are more important than lower ranks when
determining the position of a candidate.

Example 4: Consider the set of rankings listed in �,

� =

⎛

⎜
⎜
⎜
⎜
⎝

1 4 2 3
1 4 3 2
2 3 1 4
4 2 3 1
3 2 4 1

⎞

⎟
⎟
⎟
⎟
⎠

.

The Kemeny optimal solution is (4, 2, 3, 1). Note that although
the majority of voters prefer 1 to 4, 1 is ranked last and
4 is ranked first. More precisely, we observe that according
to the pairwise majority test, 1 beats 4 but loses to 2 and 3.
On the other hand, 4 is preferred to both 2 and 3 but, as
mentioned before, loses to 1. Problems like this do not arise
due to a weakness of Kemeny’s approach, but due to the
inherent “rational intractability” of rank aggregation. As stated
by Arrow [41], for any “reasonable” rank aggregation method,
there exists a set of votes such that the aggregate ranking
prefers one candidate to another while the majority of voters
prefer the later to the former.

Let us now focus on a weighted Kendall distance with
weight function ϕ(i i+1) = (2/3)i−1, i = 1, 2, 3. The optimal
aggregate ranking for this distance equals (1, 4, 2, 3). Again,
we see a candidate with both strong showings and weak
showings, candidate 1, beat a candidate with a rather average
performance, candidate 4. Note that in this solution as well,
there exist candidates for which the opinion of the majority
is ignored: 1 is placed before 2 and 3, while according to the
pairwise majority opinion it loses to both.

Example 5: Consider the set of rankings listed in �,

� =

⎛

⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎝

5 4 1 3 2
1 5 4 2 3
4 3 5 1 2
1 3 4 5 2
4 2 5 3 1
1 2 5 3 4
2 4 3 5 1

⎞

⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎠

.

With the weight function ϕ(i i+1) = (2/3)i−1, i ∈ [4], the
aggregate equals (4, 1, 5, 2, 3). The winner is 4, while the
plurality rule winner is 1 as it appears three times on the top.
Next, we increase the rate of decay of the weight function
and let ϕ(i i+1) = (1/3)i−1, i ∈ [4]. In this case, the solution
equals (1, 4, 2, 5, 3), and the winner is candidate 1, the same
as the plurality rule winner. This result is a consequence of
the fact that the plurality winner is the aggregate based on the
weighted Kendall distance with weight function ϕ(p),

ϕ
(p)
(i i+1) =

{
1, i = 1,

0, else.

The Kemeny aggregate is (4, 5, 1, 2, 3).

4In plurality voting, the candidate with the most first-place rankings is
declared the winner.

A shortcoming of distance-based rank aggregation is that
sometimes the solution is not unique, and that the possible
solutions may differ widely. The following example describes
one such scenario.

Example 6: Suppose that the votes are given by �, where

� =

⎛

⎜
⎜
⎝

1 2 3
1 2 3
3 2 1
2 1 3

⎞

⎟
⎟
⎠.

Here, the permutations (1, 2, 3), (2, 1, 3) are the Kemeny
optimal solutions, with cumulative distance 4 from �. When
the Kemeny optimal solution is not unique, it may be possible
to obtain a unique solution by using a non-uniform weight
function. In this example, it can be shown that for any non-
uniform weight function ϕ with ϕ(1 2) > ϕ(2 3), the solution is
unique, namely, (1, 2, 3).

A similar situation occurs if the last vote is changed to
(2, 3, 1). In that case, the permutations (1, 2, 3), (2, 1, 3), and
(2, 3, 1) are the Kemeny optimal solutions with cumulative
distance 5 from �. Again, for any non-uniform weight func-
tion ϕ with ϕ(1 2) > ϕ(2 3) the solution is unique and equal to
(1, 2, 3).

To summarize, these examples illustrate how a proper
choice for the weighted Kendall distance insures that top
ranks are emphasized and how one may over-rule a moderate
number of low rankings using a specialized distance formula.
One may argue that certain generalizations of Borda’s
method, involving non-uniform gaps between ranking scores,
may achieve similar goals. This is not the case, as will be
illustrated in what follows.

One major difference between generalized Borda and
weighted Kendall distances is in the already mentioned major-
ity criterion [42], which states that the candidate ranked
first by the majority of voters has to be ranked first in the
aggregate.5 Borda’s aggregate with an arbitrary score assign-
ments does not have this property, while aggregates obtained
via weighted Kendall distances with decreasing weights not
identically equal to zero have this property.

We first show that the Borda method with a fixed, but
otherwise arbitrary set of scores may not satisfy the majority
criterion. We prove this claim for n = 3. A similar argument
can be used to establish this claim for n > 3.

Suppose, for simplicity, that the number m of voters is odd
and that, for each vote, a score si is assigned to the candidate
with rank i , i = 1, 2, 3. Here, we assume that s1 > s2 >
s3 ≥ 0. Suppose also that (m + 1)/2 of the votes equal
(a, b, c) and that (m − 1)/2 of the votes equal (b, c, a). Let
the total Borda scores for candidates a and b be denoted by
S and S′, respectively. We have

S = m + 1

2
s1 + m − 1

2
s3,

S′ = m + 1

2
s2 + m − 1

2
s1,

5Note that a candidate ranked first by the majority is a Condorcet candidate.
It is desirable that an aggregation rule satisfy the majority criterion and
indeed most do, including the Condorcet method, the plurality rule, the single
transferable vote method, and the Coombs method.
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and thus S−S′ = s1−m
( s2−s3

2

)− s2+s3
2 . If m > 2s1−(s2+s3)

s2−s3
,

then S − S′ < 0 and Borda’s method ranks b higher than a.
As a result, candidates a, ranked highest by more than half of
the voters, is not ranked first according to Borda’s rule. This
is not the case with weighted Kendall distances, as shown in
the sequel.

Proposition 3: An aggregate ranking obtained using the
weighted Kendall distance with a decreasing weight function
not identically equal to zero satisfies the majority criterion.

Proof: Suppose that the weight function is ϕ, and let
wi = ϕ(i i+1). Since w is decreasing and not identically equal
to zero, we have w1 > 0. Let � = {σ1, . . . , σm} denote the
set of votes and let a1 be the candidate that is ranked first by
a majority of voters. Partition the set of votes into two sets,
C and D, where C is the set of votes that rank a1 first and D is
the set of votes that do not. Furthermore, denote the aggregate
ranking by π .

Suppose that a1 is not ranked first in π and that π is of the
form

(a2, . . . , ai , a1, ai+1, . . . , an),

for some i ≥ 2. Let π ′ = (a1, a2, . . . , an). We show that

m∑

j=1

dϕ

(
π, σ j

)
>

m∑

j=1

dϕ

(
π ′, σ j

)

which contradicts the optimality of π , implying that a1 must
be ranked first in π .

For σ ∈ C , we have

dϕ(π, σ ) = dϕ(π, π ′)+ dϕ(π ′, σ ). (17)

To see the validity of this claim, note that if π is to be
transformed to σ via Algorithm 1, it is first transformed to π ′
by moving a1 to the first position.

For σ ∈ D, we have

dϕ(π ′, σ ) ≤ dϕ(π ′, π)+ dϕ(π, σ ), (18)

which follows from the triangle inequality.
To complete the proof, we write

m∑

j=1

dϕ(π, σ j ) =
∑

σ∈C

dϕ(π, σ )+
∑

σ∈D

dϕ(π, σ )

≥
∑

σ∈C

dϕ(π ′, σ )+ |C|dϕ(π, π ′)

+
∑

σ∈C

dϕ(π ′, σ )− |D|dϕ(π, π ′)

=
m∑

j=1

dϕ(π ′, σ )+ (|C| − |D|) dϕ(π, π ′)

>

m∑

j=1

dϕ(π ′, σ )

where the first inequality follows from (17) and (18), and the
second inequality follows from the facts that |C| > |D| and
that dϕ(π, π ′) ≥ w1 > 0. �

VI. WEIGHTED TRANSPOSITION DISTANCE

The definition of the Kendall τ distance and the weighted
Kendall distance is based on transforming one permutation
into another using adjacent transpositions. If, instead, all
transpositions are allowed – including non-adjacent transpo-
sitions – a more general distance measure, termed weighted
transposition distance is obtained. This distance measure,
as will be demonstrated, represents a generalization of the
weighted Kendall distance suitable for addressing similarity
issues among candidates.

Definition 5: Consider a function ϕ that assigns to each
transposition θ, a non-negative weight ϕθ . The weight of a
sequence of transpositions is defined as the sum of the weights
of its transpositions. That is, the weight of the sequence
τ = (τ1, . . . , τ|τ |) of transpositions equals

wt(τ ) =
|τ |∑

i=1

ϕτi .

For simplicity, we also denote the weighted transposition
distance between two permutations π, σ ∈ Sn , with weight
function ϕ, by dϕ . This distance equals the minimum weight
of a sequence τ = (τ1, . . . , τ|τ |) of transpositions such
that σ = πτ1 · · · τ|τ |. As before, we refer to such a
sequence of transpositions as a transform converting π to σ
and let AT (π, σ ) denote the set of transforms that convert
π to σ .

With this notation at hand, the weighted transposition
distance between π and σ , with respect to ϕ, may be
written as

dϕ(π, σ ) = min
τ∈AT (π,σ )

wt(τ ).

The Kendall τ distance and the weighted Kendall distance
may be viewed as special cases of the weighted transposition
distance: to obtain the Kendall τ distance, let

ϕθ =
{

1, θ = (i i + 1), i = 1, 2, . . . , n − 1

∞, else,

and to obtain the weighted Kendall distance, let

ϕθ =
{

wi , θ = (i i + 1), i = 1, 2, . . . , n − 1

∞, else,

for a non-negative weight function w. It is worth point-
ing out that the weighted transposition distance is not
based on the axiomatic approach described in the previous
section.

When applied to the inverse of rankings, the weighted
transposition distance can be successfully used to model sim-
ilarities of objects in rankings. In such a setting, permutations
that differ by a transposition of two similar items are at a
smaller distance than permutations that differ by a transpo-
sition of two dissimilar items, as demonstrated in the next
subsection.

A. Weighted Transposition Distance as Similarity Distance

We illustrate the concept of distance measures taking into
account similarities via the following example, already men-
tioned in the Motivation section. Suppose that four cities:
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Melbourne, Sydney, Helsinki, and Vienna are ranked based
on certain criteria as

π = (Helsinki, Sydney, Vienna, Melbourne),

and according to another set of criteria as

σ = (Melbourne, Vienna, Helsinki, Sydney).

The similarity distance between π and σ is defined as
follows. We assign weights to swapping cities in the rankings,
e.g., suppose that the weight of swapping cities in the same
country is 1, in the same continent 2, and 3 otherwise. The
similarity distance between π and σ is the minimum weight of
a sequence of swaps that converts π to σ , where the weights
are determined by the similarity of the items being swapped.
By inspection, one can see that the similarity distance between
π and σ equals 6. One of the sequences of swaps of weight 6
is as follows: first swap Helsinki and Sydney with weight 3,
then swap Melbourne and Sydney with weight 1, and finally
swap Vienna and Helsinki with weight 2.

To express the similarity distance formally, we write
the rankings as permutations, representing Melbourne by 1,
Sydney by 2, Vienna by 3, and Helsinki by 4. This is
equivalent to assuming that the identity ranking is

e = (Melbourne, Sydney, Vienna, Helsinki).

We then have π = (4, 2, 3, 1) and σ = (1, 4, 2, 3).
It is straightforward to see that every statements about

swapping elements i and j may be converted to statements
made about swapping elements at positions i and j by using
the inverse of the ranking/permutation. Therefore, we may cast
the similarity distance as the weighted transposition distance.
This approach has the benefit of being consistent with the
weighted Kendall distance. The similarity distance between
π and σ is equal to the weighted transposition distance
between π−1 and σ−1 with the weight function

ϕ(1 2) = 1, ϕ(1 3) = 3, ϕ(1 4) = 3,

ϕ(2 3) = 3, ϕ(2 4) = 3, ϕ(3 4) = 2.

It should be clear from the context that the indices in the
weight function refer to the candidates, and not positions.

Example 7: Consider the votes listed in �,

� =
⎛

⎝
1 2 3 4
3 2 1 4
4 1 3 2

⎞

⎠.

Suppose that even numbers and odd numbers represent dif-
ferent types of candidates in a way that the following weight
function is appropriate

ϕ(i j ) =
{

1, if i, j are both odd or both even,

2, else.

Note that the votes are “diverse” in the sense that they
alternate between odd and even numbers. On the other hand,
the Kemeny aggregate is (1, 3, 2, 4), which puts all odd
numbers ahead of all even numbers. Aggregation using the
similarity distance yields (1, 2, 3, 4), a solution which may be
considered “diverse” since the even and odd numbers alternate

in the solution. The reason behind this result is that the
Kemeny optimal solution is oblivious to the identity of the
candidates and their (dis)similarities, while aggregation based
on similarity distances takes such information into account.

Example 8: Consider the votes listed in �,

� =

⎛

⎜
⎜
⎜⎜
⎝

1 2 3 4 5 6
1 2 3 4 5 6
3 6 5 2 1 4
3 6 5 2 1 4
5 4 1 6 3 2.

⎞

⎟
⎟
⎟⎟
⎠

.

Suppose that the weight function is the same as the one used
in the previous example. In this case, neither the Kemeny
aggregates nor the similarity distance aggregates are unique.
More precisely, Kendall τ gives four solutions:

⎛

⎜
⎜
⎝

3 5 1 6 2 4
3 5 1 2 4 6
1 3 5 2 4 6.

1 3 5 6 2 4.

⎞

⎟
⎟
⎠,

while there exist nine optimal aggregates under the weighted
transposition distance of the previous example, of total
distance 10: ⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

5 6 3 4 1 2
5 4 3 2 1 6
5 2 3 6 1 4
3 4 1 2 5 6
3 6 1 4 5 2
3 2 1 6 5 4
1 4 5 2 3 6
1 2 5 6 3 4
1 6 5 4 3 2.

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

.

Note that none of the Kemeny optimal aggregates have good
diversity properties: the top half of the rankings consists
exclusively of odd numbers. This is because this method
cannot take into account the fact that all voters picked an
even number for the second position. On the other hand, the
optimal similarity distance rankings all contain exactly one
even element among the top-three candidates. Such diversity
properties are hard to prove theoretically.

It is important to note that the use of similarity distance for
rank aggregation, while incorporating similarity information,
has the drawback of ignoring the positions of the items being
swapped. Perhaps the ideal distance measure based on pairwise
swaps depends on both positions and identities of candidates
and not one or the other. Computing such distances however
may be challenging and requires more study.

In Subsection VI-B, we study how to compute the weighted
transposition distance and present a 4-approximation for this
distance (see Theorem 3). We also improve this approximation
result for two special cases of weight functions, as described
in Propositions 4 and 5.

B. Computing the Weighted Transposition Distance

In this subsection, we describe how to compute or approx-
imate the weighted transposition distance dϕ, given the
weight function ϕ. Certain aspects of the computation of the
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weighted transposition distances are studied in more detail
in our companion paper [33] in the context of sorting and
rearrangement.

We find the following definitions useful in our subsequent
derivations. For a given weight function ϕ, we let Kϕ denote
a complete undirected weighted graph with vertex set [n],
where the weight of each edge (i, j) equals the weight of
the transposition (i j), ϕ(i j ). For a subgraph H of Kϕ, with
edge set EH , we define the weight of H as

wt(H ) =
∑

(i, j )∈EH

ϕ(i j ),

that is, the sum of the weights of edges of H . For π, σ ∈ Sn ,
we define Dϕ(π, σ ) as6

Dϕ(π, σ ) =
n∑

i=1

wt
(

p∗ϕ(π−1(i), σ−1(i))
)
,

where p∗ϕ(a, b) denotes the minimum weight path from a to b
in Kϕ .

It is easy to verify that Dϕ is a pseudo-metric and that it is
left-invariant,

Dϕ(ηπ, ησ) = Dϕ(π, σ ), π, σ, η ∈ Sn .

A weight function ϕ is a metric weight function if it satisfies
the triangle inequality in the sense that

ϕ(a b) ≤ ϕ(a c) + ϕ(b c), a, b, c ∈ [n]. (19)

Lemma 3: For a weight function ϕ and for π, σ ∈ Sn, we
have dϕ(π, σ ) ≤ 2Dϕ(π, σ ). If ϕ is a metric weight function,
the bound may be improved to dϕ(π, σ ) ≤ Dϕ(π, σ ).
Due to its length, the proof of Lemma 6 is presented in the
appendix. The next lemma provides a lower bound for dϕ in
terms of Dϕ .

Lemma 4: For π, σ ∈ Sn, we have dϕ(π, σ ) ≥ 1
2 Dϕ(π, σ ).

Proof: Since dϕ and Dϕ are both left-invariant, it suffices
to show that dϕ(π, e) ≥ 1

2 Dϕ(π, e). Let (τ1, . . . , τl) , with
τ j = (a j b j ), be a minimum weight transform of π into e,
so that dϕ(π, e) = ∑l

i=1 ϕ(a j b j ). Furthermore, define π j =
πτ1 · · · τ j , 0 ≤ j ≤ l. Then,

Dϕ

(
π j−1, e

)− Dϕ

(
π j , e

) ≤ 2wt
(

p∗ϕ
(
a j , b j

)) ≤ 2ϕ(a j b j ),

where the first inequality follows from considering the max-
imum possible decrease of the value of Dϕ induced by the
transposition (a j b j ), while the second inequality follows from
the definition of p∗ϕ . By summing up the terms in the preceding
formula over 0 ≤ j ≤ l, and thus obtaining a telescop-
ing inequality of the form Dϕ(π, e) ≤ 2

∑l
i=1 ϕ(a j b j ) =

2dϕ(π, e), we arrive at the desired result. �
From the previous two lemmas, we have the following

theorem.
Theorem 3: For π, σ ∈ Sn and an arbitrary non-negative

weight function ϕ, we have

1

2
Dϕ(π, σ ) ≤ dϕ(π, σ ) ≤ 2Dϕ(π, σ ).

6Note that this definition is consistent with the definition of a specialization
of this function, given in (15).

Fig. 3. A defining path (a), which may correspond to a metric-path weight
function or an extended-path weight function, and a defining tree (b), which
may correspond to a metric-tree weight function or an extended-tree weight
function.

In addition, if ϕ is a metric weight function, then

1

2
Dϕ(π, σ ) ≤ dϕ(π, σ ) ≤ Dϕ(π, σ ).

1) Computing the Distance for Metric-Tree Weights: For
special classes of the weight function ϕ, described below, the
bounds in Theorem 3 may be improved further. We start with
the following definitions.

Definition 6: A weight function ϕ is a metric-tree weight
function if there exists a weighted tree � over the vertex set
[n] such that for distinct a, b ∈ [n], ϕ(a b) is the sum of the
weights of the edges on the unique path from a to b in �.
If � is a path, i.e., if � is a linear graph, then ϕ is called a
metric-path weight function.

Furthermore, a weight function ϕ′ is an extended-tree weight
function if there exists a weighted tree � over the vertex set [n]
such that for distinct a, b ∈ [n], ϕ′(a b) equals the the weight of
the edge (a, b) whenever a and b are adjacent, and ϕ′(a b) = ∞
otherwise. If � is a path, then ϕ′ is called an extended-path
weight function.

Note that the Kendall weight function, defined in the
previous section, is an extended path weight function.

The tree or path corresponding to a weight function in
the preceding definitions is termed the defining tree or path
of the weight function. An example is given in Figure 3, where
the numbers indexing the edges denote their weights.

For a metric-tree weight function ϕ with defining tree �,
and for a, b ∈ [n], the weight of the path p∗ϕ(a, b) equals the
weight of the unique path from a to b in �. This weight,
in turn, equals ϕ(a b). As a result, for metric-tree weights,
p∗ϕ(a, b) equals the weight of the path from a to b in �.

Furthermore, from Lemma 4, we have dϕ((a b), e) ≥
1
2 Dϕ((a b), e) = wt(p∗ϕ(a, b)) = ϕ(a b). Since we also have
dϕ((a b), e) ≤ ϕ(a b), it follows that

dϕ((a b), e) = ϕ(a b). (20)

The next proposition shows that the exact distance for
metric-path weight functions can be computed in polynomial
time.
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Fig. 4. The cycle (2 6 4 7 5) in Figure (a) is decomposed into two cycles,
(2 6 4) and (4 7 5), depicted in Figure (b). Note that (2 6 4 7 5) =
(2 6 4)(4 7 5).

Proposition 4: For a metric-path weight function ϕ and for
π, σ ∈ Sn, we have dϕ(π, σ ) = 1

2 Dϕ(π, σ ).
Proof: From Lemma 4, we have that dϕ(π, σ ) ≥

1
2 Dϕ(π, σ ). It remains to show that dϕ(π, σ ) ≤ 1

2 Dϕ(π, σ ).
Since dϕ and Dϕ are both left-invariant, it suffices to prove that
dϕ(π, e) ≤ 1

2 Dϕ(π, e).
Let {c1, c2, . . . , ck} be the cycle decomposition of π .

Similar to the proof of Lemma 6 (see Appendix), it suffices
to show that

dϕ(c, e) ≤ 1

2
Dϕ(c, e) (21)

for any cycle c = (a1 a2 · · · a|c|).
The proof is by induction. For |c| = 2, (21) holds since,

from (20), we have

dϕ((a1 a2), e) = ϕ(a b) = wt
(

p∗ϕ(a1, a2)
) = 1

2
Dϕ((a1 a2), e).

Assume that (21) holds for 2 ≤ |c| < l. We show that it also
holds for |c| = l. We use Figure 4 for illustrative purposes.
In all figures in this section, undirected edges describe the
defining tree, while directed edges describe the cycle at hand.

Without loss of generality, assume that the defining path
of ϕ, �, equals (1, 2, . . . , n). Furthermore, assume that
a1 = min{i : i ∈ c}; if this were not the case, we could
rewrite c by cyclically shifting its elements. Let at = min{i :
i ∈ c, i �= a1} be the “closest” element of c to a1 (other than
a1 itself). For example, in Figure 4, one has c = (2 6 4 7 5),
a1 = 2 and at = 4.

We have

c = (a1 a2 · · · at · · · al)

= (a1 a2 · · · at)(at at+1 · · · al)

and thus

dϕ(c, e) ≤ dϕ((a1 a2 · · · at ), e)+ dϕ((at at+1 · · · al), e)

≤ 1

2

t−1∑

i=1

wt
(

p∗ϕ(ai , ai+1)
)+ wt

(
p∗ϕ(at , a1)

)

+1

2

l−1∑

i=t

wt
(

p∗ϕ(ai , ai+1)
)+ wt

(
p∗ϕ(al, at )

)

= 1

2

l∑

i=1

wt
(

p∗ϕ(ai , c(ai ))
) = 1

2
Dϕ(c, e).

Fig. 5. If each of the cycles of a permutation lie on a path, the method of
Proposition 4 can be used to find the weighted transposition distance.

where the second inequality follows from the induction
hypothesis, while the first equality follows from the fact that
wt

(
p∗ϕ(at , a1)

)+ wt
(

p∗ϕ(al, at )
) = wt

(
p∗ϕ(al , a1)

)
. �

The approach described in the proof of Proposition 4
can also be applied to the problem of finding the weighted
transposition distance when the weight function is a metric-
tree weight function and each of the cycles of the permutation
consist of elements that lie on some path in the defining
tree. An example of such a permutation and such a weight
function is shown in Figure 5. Note that in this example, a
cycle consisting of elements 3, 5, 7 would not correspond to
a path.

In such a case, for each cycle c of π we can use the path in
the defining tree that contains the elements of c to show that

dϕ(c, e) = 1

2
Dϕ(c, e). (22)

For example the cycle (1 4 6) lies on the path (1, 2, 3, 4, 5, 6)
and the cycle (5 8) lies on the path (5, 4, 7, 8). Since (22)
holds for each cycle c of π , we have

dϕ(π, e) = 1

2
Dϕ(π, e).

A similar scenario in which essentially the same argument
as that of the proof of Proposition 4 can be used is as follows:
the defining tree has one vertex with degree three and no
vertices with degree larger than three (i.e., a tree with a
Y shape), and for each cycle of π , there are two branches
of the tree that do not contain two consecutive elements of c.
It can then be shown that each such cycle can be decomposed
into cycles that lie on paths in the defining tree, reducing the
problem to the previously described one. An example is shown
in Figure 6.

One may argue that the results of Proposition 4 and its
extension to metric-trees have limited application, as both
the defining tree and the permutations/rankings used in the
computation must be of special forms. One way to satisfy
these conditions is to require that a ranking π be such that
there are no edges in the cycle graph of π between two given
branches of a Y-shaped tree �. We show next that under
certain conditions the probability of such permutations goes
to one as n→∞.

Let the set of vertices in the i th branch of a Y shaped
defining tree �, i = 1, 2, 3, be denoted by Bi and let bi denote
the number of vertices in Bi . Clearly, b1 + b2 + b3 + 1 = n.

Assume, without loss of generality, that the numbering of
the branches is such that b1 ≥ b2 ≥ b3. As an illustration,
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Fig. 6. The cycle (1 6 5 2 8 3 7) in Figure (a) is decomposed into two cycles,
(1 6 5 2) and (2 8 3 7), as shown in Figure (b). Note that (1 6 5 2 8 3 7) =
(1 6 5 2)(2 8 3 7).

in Figure 6 we have

B1 = {1, 2, 3}, b1 = 3,

B2 = {5, 6}, b2 = 2,

B3 = {7, 8}, b3 = 2.

Let Pn denote the number of permutations π whose cycle
decomposition does not contain an edge between B2 and B3.
This quantity is greater than or equal to the number of
permutations π such that π ( j) /∈ B2 ∪ B3 for j ∈ B2 ∪ B3.
The number of permutation with the latter property equals( b1+1

b2+b3

)
(b2 + b3)!(b1 + 1)!. Hence,

Pn ≥ ((b1 + 1)!)2

(b1 + 1− b2 − b3)! ,
and thus

Pn

n! ≥
∏n−b2−b3

j=n+1−2b2−2b3
j

∏n
j=n+1−b2−b3

j
·

In particular, if b2 = b3 = 1, we have

Pn

n! ≥
(n − 3)(n − 2)

(n − 1)n
= 1− 4

n
+ O(n−2)

and more generally, if b2 + b3 = o(n), then

Pn

n! ≥
(n + o(n))b2+b3

(n + o(n))b2+b3
∼ 1,

or equivalently, Pn ∼ n!.
Hence, if b2 + b3 = o(n), the distance dϕ(π, e) of a

randomly chosen permutation π from the identity equals
Dϕ(π, e)/2 with probability approaching 1 as n→∞.

It is worth noting that for metric-tree weight functions,
the equality of Proposition 4 is not, in general, satisfied.

Fig. 7. For the above metric-tree weight function and π = (2 3 4), the
equality of Proposition 4 does not hold.

To prove this claim, consider the metric-tree weight function ϕ
in Figure 7, where, for a, b ∈ [4], a < b,

ϕ(a b) =
{

1, if a = 1,

∞, if a �= 1.

It can be shown that for the permutation π = (2 3 4),
dϕ(π, e) = 4, while 1

2 Dϕ(π, e) = 3.
The following proposition provides a 2-approximation for

transposition distances based on extended-path weight func-
tions. As the weighted Kendall distance is a special case of
the weighted transposition distance with extended-path weight
functions, the proposition also implies Proposition 2.

Proposition 5: For an extended-path weight function ϕ and
for π, σ ∈ Sn,

1

2
Dϕ(π, σ ) ≤ dϕ(π, σ ) ≤ Dϕ(π, σ ).

Proof: The lower bound follows from Lemma 4. To prove
the upper bound, consider a metric-path weight function ϕ′,
with the same defining path � as ϕ, such that

ϕ′(a b) = 2ϕ(a b)

for any pair a, b adjacent in �. From Lemma 6, it follows
that for distinct c, d ∈ [n],
dϕ((c d), e) ≤ 2wt(p∗ϕ(c, d)) = wt(p∗ϕ′(c, d)) = dϕ′((c d), e).

Hence,

dϕ(π, σ ) ≤ dϕ′(π, σ ) = 1

2
Dϕ′ (π, σ ) = Dϕ(π, σ ),

which proves the claimed result. �

VII. AGGREGATION ALGORITHMS

Despite the importance of the rank aggregation problem in
many areas of information retrieval, only a handful of results
regarding the complexity of the problem are known. Among
them, the most important result is the fact that finding a
Kemeny optimal solution is NP-hard [16]. Since the Kendall
τ distance is a special case of the weighted Kendall distance,
finding the aggregate ranking for the latter is also NP-hard.
In particular, exhaustive search approaches – akin to the one
we used in the previous sections – are not computationally
feasible for large problems.
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We present next algorithms for aggregating rankings using
weighted distances. We provide an algorithm based on bipar-
tite matching applicable to weighted transposition distances
that gives a 2-approximation for aggregation under weighted
Kendall distances (Proposition 6). The output of this algorithm
is then used as the starting point of a local search algorithm.
We also present a PageRank-like algorithm for aggregation
with weighted Kendall distances.

For the first algorithmic approach, assuming that π∗ is
the solution to (1), the ranking σi closest to π∗ provides a
2-approximation for the aggregate ranking. This easily follows
from the fact that the Kendall τ distance satisfies the triangle
inequality. As a result, one only has to evaluate the pairwise
distances of the votes � in order to identify a 2-approximation
aggregate for the problem. Assuming the weighted Kendall
distance can be computed efficiently (for example, if the
weight function is monotonic), the same is true of the weighted
Kendall distance as it is also a metric and thus satisfies the
triangle inequality.

A second method for obtaining a 2-approximation is an
extension of a bipartite matching algorithm. For any distance
function that may be written as

d(π, σ ) =
n∑

k=1

f (π−1(k), σ−1(k)), (23)

where f denotes an arbitrary non-negative function, one
can find an exact solution to (1) as described in the
next section. The matching algorithm approach for classical
Kendall τ aggregation was first proposed in [16].

A. Vote Aggregation Using Matching Algorithms

Consider a complete weighted bipartite graph G = (X, Y ),
with X = {1, 2, . . . , n} corresponding to the n ranks to be
filled in, and Y = {1, 2, . . . , n} corresponding to the elements
of [n], i.e., the candidates. Let (i, j) denote an edge between
i ∈ X and j ∈ Y . We say that a perfect bipartite matching
P corresponds to a permutation π whenever (i, j) ∈ P if and
only if π(i) = j . If the weight of (i, j) equals

m∑

l=1

f (i, σ−1
l ( j)),

i.e., the weight incurred by π(i) = j , the minimum weight
perfect matching corresponds to a solution of (1). The dis-
tance of (23) is a generalized version of Spearman’s footrule
since Spearman’s footrule [24] can be obtained by choosing
f (x, y) = |x− y|. Below, we explain how to use the matching
approach for aggregation based on a general weighted Kendall
distance. More details about this approach may be found in
our companion conference paper [43].

Recall that for a weighted Kendall weight function ϕ,

Dϕ(π, σ ) =
n∑

i=1

w(π−1(i) : σ−1(i)),

where

w(k : l) =

⎧
⎪⎨

⎪⎩

∑l−1
h=k ϕ(h h+1), if k < l,

∑k−1
h=l ϕ(h h+1), if k > l,

0, if k = l.

Note that Dϕ is a distance measure of the form of (23), and
thus a solution to problem (1) for d = Dϕ can be found exactly
in polynomial time.

Suppose that the set of votes is given by � = {σ1, . . . , σm}.
Proposition 6: Let π ′ = arg minπ

∑m
l=1 Dϕ(π, σi ) and

π∗ = arg minπ
∑m

l=1 dϕ(π, σi ). The permutation π ′ is a
2-approximation to the optimal rank aggregate π∗ if ϕ
corresponds to a weighted Kendall distance.

Proof: From Proposition 2, for a weighted Kendall weight
function ϕ and for permutations π and σ ,

1

2
Dϕ(π, σ ) ≤ dϕ(π, σ ) ≤ Dϕ(π, σ ).

Thus we have
m∑

l=1

dϕ(π ′, σi ) ≤
m∑

l=1

Dϕ(π ′, σi ).

and
1

2

m∑

l=1

Dϕ(π∗, σi ) ≤
m∑

l=1

dϕ(π∗, σi )

From the optimality of π ′ with respect to D, we find
m∑

l=1

Dϕ(π ′, σi ) ≤
m∑

l=1

Dϕ(π∗, σi ).

Hence
m∑

l=1

dϕ(π ′, σi ) ≤ 2
m∑

l=1

dϕ(π∗, σi ).

�
In fact, the preceding proposition applies to the larger

class of weighted transposition distances with extended-path
weights. It can similarly be shown that for a weighted trans-
position distance with general weights (resp. metric weights),
π ′ is a 4-approximation (resp. a 2-approximation). Finally, for
a weighted transposition distance with metric-path weights,
π ′ represents the exact solution.

A simple approach for improving the performance of the
matching based algorithm for the weighted Kendall distances
is to couple it with a local descent method. Assume that the
estimate of the aggregate at step � equals π(�). Let An be the
set of adjacent transpositions in Sn . Then

π(�+1) = π(�) arg min
θ∈An

m∑

i=1

d(π(�) θ, σi ).

The search terminates when the cumulative distance of the
aggregate from the set of votes � cannot be decreased further.
We choose the starting point π(0) to be the ranking π ′
of Proposition 6 obtained by the minimum weight bipartite
matching algorithm. This method will henceforth be referred
to as Bipartite Matching with Local Search (BMLS).

An important question at this point is how does the approx-
imate nature of the BMLS aggregation process change the
aggregate, especially with respect to the top-vs-bottom or sim-
ilarity property? This question is hard, and we currently have
no mathematical results pertaining to this problem. Instead, we
describe a number of simulation results that may guide future
analysis of this issue.
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In order to see the effect of the BMLS on vote aggregation,
we revisit Examples 3-6. In all except for one case the solution
provided by BMLS is the same as the exact solution, both for
the Kendall τ and weighted Kendall distances.

The exception is Example 4. In this case, for the weight
function ϕ(i i+1) = (2/3)i−1, i ∈ [3], the exact solution
equals (1, 4, 2, 3) but the solution obtained via BMLS equals
(4, 2, 3, 1). Note that these two solutions differ significantly
in terms of their placement of candidate 1, ranked first in the
exact ranking and last in the approximate ranking. The dis-
tances between the two solutions, dϕ((1, 4, 2, 3), (4, 2, 3, 1)),
equals 2.11 and is rather large. Nevertheless, the cumulative
distances to the votes are very close in value:

∑

i

dϕ((1, 4, 2, 3), σi ) = 9,

∑

i

dϕ((4, 2, 3, 1), σi ) = 9.11.

Hence, as with any other distance based approach, the approx-
imation result may sometimes diverge significantly from the
optimum solution while the closeness of the approximate
solution to the set of votes is nearly the same as that of the
optimum solution.

B. Vote Aggregation Using PageRank

An algorithm for data fusion based on the PageRank and
HITS algorithms for ranking web pages was proposed in [16].
PageRank is one of the most important algorithms developed
for search engines used by Google, with the aim of scoring
web-pages based on their relevance. Each webpage that has
hyperlinks to other webpages is considered a voter, while
the voter’s preferences for candidates is expressed via the
hyperlinks. When a hyperlink to a webpage is not present,
it is assumed that the voter does not support the given
candidate webpage. Although the exact implementation details
of PageRank are not known, it is widely assumed that the
graph of webpages is endowed with near-uniform transi-
tion probabilities. The ranking of the webpages is obtained
by computing the stationary probabilities of the chain, and
ordering the pages according to the values of the stationary
probabilities.

This idea can be easily adapted to the rank aggregation
problem. In such an adaptation, the states of a Markov chain
correspond to the candidates and the transition probabilities
are functions of the votes. Dwork et al. [4], [16] proposed
four different ways for computing the transition probabili-
ties from the votes. Below, we describe the method that is
most suitable for our problem and provide a generalization
of the algorithm for aggregation with the weighted Kendall
distance.

Consider a Markov chain with states indexed by the can-
didates. Let P denote the transition probability matrix of the
Markov chain, with Pij denoting the probability of going from
state (candidate) i to state j . In [16], the transition probabilities
are evaluated as

Pij = 1

m

∑

σ∈�
Pij (σ ),

where

Pij (σ ) =

⎧
⎪⎨

⎪⎩

1
n , if σ−1( j) < σ−1(i),

1− σ−1(i)−1
n , if i = j,

0, if σ−1( j) > σ−1(i).

Our Markov chain model for weighted Kendall distance is
similar, with a modification that includes incorporating trans-
position weights into the transition probabilities. To accom-
plish this task, we proceed as follows.

Let wk = ϕ(k k+1), and let iσ = σ−1(i) for candidate i ∈ [n].
We set

βi j (σ ) = max
l: jσ≤l<iσ

∑iσ−1
h=l wh

iσ − l
(24)

if jσ < iσ , βi j (σ ) = 0 if jσ > iσ , and

βii (σ ) =
∑

k:kσ >iσ

βki (σ ).

The transition probabilities equal

Pij = 1

m

m∑

k=1

Pij (σk),

with

Pij (σ ) = βi j (σ )
∑

k βik(σ )
.

Intuitively, the transition probabilities described above may
be interpreted as follows. The transition probabilities are
obtained by averaging the transition probabilities correspond-
ing to individual votes σ ∈ �. For each vote σ , consider
candidates j and k with jσ = iσ − 1 and kσ = iσ − 2.
The probability of going from candidate i to candidate j is
proportional to w jσ = ϕ( jσ iσ ). This implies that if w jσ > 0,
one moves from candidate i to candidate j with positive
probability. Furthermore, larger values for w jσ result in higher
probabilities for moving from i to j .

In the case of candidate k, it seems reasonable to let the
probability of transitioning from candidate i to candidate k be
proportional to

w jσ+wkσ
2 . However, since k is ranked before

j by vote σ , it is natural to require that the probability of
moving to candidate k from candidate i be at least as high
as the probability of moving to candidate j from candidate
i . This reasoning leads to βik(σ ) = max{w jσ ,

w jσ+wkσ
2 } and

motivates using the maximum in (24). Finally, the probability
of staying with candidate i is proportional to the sum of the
β’s from candidates placed below candidate i .

Example 9: Let the votes in � consist of σ1 = (a, b, c),
σ2=(a, b, c), and σ3=(b, c, a), and let w=(w1, w2)=(2, 1)

Consider the vote σ1 = (a, b, c). We have βba (σ1) =
w1
1 = 2. Note that if w1 is large, then βba is large as well.

In addition, βcb (σ1) = w2
1 = 1 and

βca (σ1) = max

{
w1 +w2

2
, βcb (σ1)

}
= 3

2
.

The purpose of the max function is to ensure that βca (σ1) ≥
βcb (σ1) , which is a natural requirement given that a is ranked
before b according to σ1.
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Fig. 8. The Markov chain for Example 9.

Finally, βaa (σ1) = βca (σ1) + βba (σ1) = 2 + 3
2 = 7

2 and
βbb (σ1) = βcb (σ1) = 1. Note that according to the transition
probability model, one also has βaa (σ1) ≥ βbb (σ1) . This may
again be justified by the fact that σ1 places a higher than b.

Since σ1 = σ2, we have

P (σ1) = P (σ2) =
⎛

⎝
1 0 0

2/3 1/3 0
3/5 2/5 0

⎞

⎠.

Similar computations yield

βcb (σ3) = 2, βac (σ3) = 1, βab (σ3) = 3

2

βaa (σ3) = 0, βbb (σ3) = 2+ 3

2
= 7

2
, βcc (σ3) = 1,

and thus

P (σ3) =
⎛

⎝
0 3/5 2/5

0 1 0
0 2/3 1/3

⎞

⎠.

From the P (σ1) , P (σ2) , and P (σ3), we obtain

P = P (σ1)+ P (σ2)+ P (σ3)

3
=
⎛

⎝
2/3 1/5 2/15
4/9 5/9 0
2/5 22/45 1/9

⎞

⎠.

The Markov chain corresponding to P is given in Figure 8.
The stationary distribution of this Markov chain is (0.56657,
0.34844, 0.084986) which corresponds to the ranking (a, b, c).

Example 10: The performance of the Markov chain
approach described above cannot be easily evaluated analyt-
ically, as is the case with any related aggregation algorithm
proposed so far.

We hence test the performance of the scheme on examples
for which the optimal solutions are easy to evaluate numeri-
cally. For this purpose, in what follows, we consider a simple
test example, with m = 11. The set of votes (rankings) is

�T =

⎛

⎜
⎜
⎜
⎜
⎝

1 1 1 2 2 3 3 4 4 5 5
2 2 2 3 3 2 2 2 2 2 2
3 3 3 4 4 4 4 5 5 3 3
4 4 4 5 5 5 5 3 3 4 4
5 5 5 1 1 1 1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

.

Note that due to the transpose operator, each column cor-
responds to a vote, e.g., σ1 = (1, 2, 3, 4, 5).

Let us consider candidates 1 and 2. Using the plurality rule,
one would arrive at the conclusion that candidate 1 should
be the winner, given that 1 appears most often at the top of
the list. Under a number of other aggregation rules, including
Kemeny’s rule and Borda’s method, candidate 2 would be the
winner.

Our immediate goal is to see how different weighted
distance based rank aggregation algorithms would position
candidates 1 and 2. The numerical results regarding this
example are presented in Table I. In the table, OPT refers
to an optimal solution which was found by exhaustive search,
and MC refers to the Markov chain method.

If the weight function is w = (w1, . . . , w4) = (1, 0, 0, 0),
where wi = ϕ(i i+1), the optimal aggregate vote clearly
corresponds to the plurality winner. That is, the winner is the
candidate with most voters ranking him/her as the top candi-
date. A quick check of Table I reveals that all three methods
identify the winner correctly. Note that the ranks of candidates
other than candidate 1 obtained by the different methods are
different. However this does not affect the distance between
the aggregate ranking and the votes.

The next weight function that we consider is the uni-
form weight function, w = (1, 1, 1, 1). This weight func-
tion corresponds to the conventional Kendall τ distance.
As shown in Table I, all three methods produce (2, 3, 4, 5, 1) ,
and the aggregates returned by BMLS and MC are
optimum.

The weight function w = (1, 1, 0, 0) corresponds to ranking
of the top 2 candidates. OPT and BMLS return 2, 3 as
the top two candidates, both preferring 2 to 3. The MC
method, however, returns 2, 1 as the top two candidates,
with a preference for 2 over 1, and a suboptimal cumula-
tive distance. It should be noted that this may be attributed
to the fact the the MC method is not designed to only
minimize the average distance: another important factor in
determining the winners via the MC method is that winning
against strong candidates “makes one strong”. In this example,
candidate 1 beats the strongest candidate, candidate 2, three
times, while candidate 3 beats candidate 2 only twice and
this fact seems to be the reason for the MC algorithm to
prefer candidate 1 to candidate 3. Nevertheless, the stationary
probabilities of candidates 1 and 3 obtained by the MC method
are very close to each other, as the vector of probabilities is
(0.137, 0.555, 0.132, 0.0883, 0.0877).

The weight function w = (0, 1, 0, 0) corresponds to iden-
tifying the top 2 candidates – i.e., it is not important which
candidate is the first and which is the second. The OPT and
BMLS identify {2, 3} as the top two candidates.

The MC method returns the stationary probabilities
(0, 1, 0, 0, 0) which means that candidate 2 is an absorbing
state in the Markov chain. This occurs because candidate 2 is
ranked first or second by all voters. The existence of absorbing
states is a drawback of the Markov chain methods. One
solution is to remove 2 from the votes and re-apply MC. The
MC method in this case results in the stationary distribution
(p (1) , p (3) , p (4) , p (5)) = (0.273, 0.364, 0.182, 0.182) ,
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TABLE I

THE AGGREGATE RANKINGS AND THE AVERAGE DISTANCE OF THE AGGREGATE RANKING FROM THE VOTES FOR

DIFFERENT WEIGHT FUNCTIONS w. FOR THE RANKING MARKED BY A *, SEE THE COMMENT IN THE TEXT

which gives us the ranking (3, 1, 4, 5). Together with the fact
that candidate 2 is the strongest candidate, we obtain the
ranking (2, 3, 1, 4, 5).

APPENDIX

A. Proof of Lemma 6

To prove Lemma 6, we first prove its special case in the
following lemma.

Lemma 5: For a non-negative weight function ϕ and a
transposition (a b) ∈ Sn, we have

dϕ((a b), e) ≤ 2wt(p∗ϕ(a, b)).

Furthermore, if ϕ is a metric weight function, then
dϕ((a b), e) ≤ wt(p∗ϕ(a, b)).

Proof: Consider a path p = (v0 = a, v1, . . . , v|p| = b)
from a to b in Kϕ . We have

(a b) = (v0 v1) (v1 v2) · · ·
(
v|p|−2 v|p|−1

)

(
v|p|−1 v|p|

) (
v|p|−2 v|p|−1

) · · · (v1 v2) (v0 v1) .

From the triangle inequality and the left-invariance of dϕ ,

dϕ((a b), e) ≤ 2
|p|∑

i=1

ϕ(vi−1 vi ) − ϕ(v|p|−1 v|p|)

= 2wt(p)− ϕ(v|p|−1 v|p|)
≤ 2wt(p).

Since p is an arbitrary path from a to b in Kϕ , we have

dϕ ((a b), e) ≤ 2wt(p∗ϕ(a, b)),

and this proves the first claim.
Now, assume that ϕ is a metric weight function and consider

the path p = (v0, v1, . . . , v|p|) from v0 = a to v|p| = b.
From (19),

ϕ(a b) = ϕ(v0 v|p|) ≤ ϕ(v0 v1) + ϕ(v1 v|p|)
≤ ϕ(v0 v1) + ϕ(v1 v2) + ϕ(v2 v|p|)
≤ · · ·

≤
|p|∑

i=1

ϕ(vi−1 vi )

= wt(p).

Since p is arbitrary, we have

dϕ((a b), e) ≤ ϕ(a b) ≤ wt(p∗ϕ(a, b)).

This completes the proof of the lemma. �

While Lemma 5 suffices to prove Lemma 6, we remark
that one may prove a slightly stronger result, presented in our
companion paper [33],

dϕ((a b), e) = min
p=(v0,...,v|p|)

(
2wt(p)− max

0≤i<|p| ϕ(vi vi+1)

)
,

where v0 = a and v|p| = b. The proof is based on significantly
more involved techniques that are beyond the scope of this
paper.

Lemma 6: For a weight function ϕ and for π, σ ∈ Sn , we
have dϕ(π, σ ) ≤ 2Dϕ(π, σ ). If ϕ is a metric weight function,
the bound may be improved to dϕ(π, σ ) ≤ Dϕ(π, σ ).

Proof: To prove the first claim, it suffices to show that
dϕ(π, e) ≤ 2Dϕ(π, e) since both dϕ and Dϕ are left-invariant.

Let {c1, c2, . . . , ck} be the cycle decomposition of π .
We have, from the triangle inequality and the left-invariance
property of dϕ , that

dϕ(π, e) ≤
k∑

i=1

dϕ(ci , e),

and, from the definition of Dϕ , that

Dϕ(π, e) =
k∑

i=1

Dϕ(ci , e).

Hence, we only need to prove that

dϕ(c, e) ≤ 2Dϕ(c, e) (25)

for a single cycle c = (a1 a2 · · · a|c|), where |c| is the length
of c.

Since c may be written as

c = (a1 a2)(a2 a3) · · · (a|c|−1 a|c|),
we have

dϕ(c, e) ≤
|c|−1∑

i=1

dϕ((ai ai+1), e)

(a)≤
|c|−1∑

i=1

2wt(p∗ϕ(ai , ai+1))

≤
|c|∑

i=1

2wt(p∗ϕ(ai , c(ai )))

≤ 2Dϕ(c, e)

where (a) follows from Lemma 5. The proof of the second
claim is similar except that the factor 2 is not needed in
inequality (a) and the following inequalities. �
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B. Computing the Weight Functions With Two
Identical Non-Zero Weights

The goal is to find the weighted Kendall distance dϕ(π, e)
with the weight function of (14), for an arbitrary π ∈ Sn . For
this purpose, let R1 = {1, . . . , a}, R2 = {a + 1, . . . , b}, and
R3 = {b + 1, . . . , n}, and define

Nπ
i j = |{k ∈ R j : π−1(k) ∈ Ri }|, i, j ∈ {1, 2, 3}.

That is, Nπ
i j is the number of elements whose ranks in π

belong to the set Ri and whose ranks in e belong to the
set R j . A sequence of transpositions that transforms π into
e moves the Nπ

i j elements of {k ∈ R j : π−1(k) ∈ Ri } from
Ri to R j . Furthermore, note that any transposition that swaps
two elements with ranks in the same region Ri , i ∈ [3],
has weight zero, while for any transposition τl that swaps an
element ranked in R1 with an element ranked in R2 or swaps
an element ranked in R2 with an element ranked in R3, we
have dϕ(τl , e) = 1.

It is straightforward to see that
∑

j Nπ
i j =

∑
j Nπ

j i . In par-
ticular, Nπ

12 + Nπ
13 = Nπ

21 + Nπ
31 and Nπ

31 + Nπ
32 = Nπ

13 + Nπ
23.

We show next that

dϕ(π, e) =
{

2Nπ
13 + Nπ

12 + Nπ
23, if Nπ

21 ≥ 1 or Nπ
23 ≥ 1,

2Nπ
13 + 1, if Nπ

21 = Nπ
23 = 0.

Note that, from Proposition 2, we have

dϕ(π, e) ≥ 1

2
Dϕ(π, e) = 2Nπ

13 + Nπ
12 + Nπ

23. (26)

Suppose that Nπ
21 ≥ 1 or Nπ

23 ≥ 1. We find a transpo-
sition τl , with dϕ(τl , e) = 1, such that π ′ = πτl satisfies
Dϕ(π ′, e) = Dϕ(π, e) − 2, and at least one of the following
conditions:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Nπ ′
21 ≥ 1,

or

Nπ ′
23 ≥ 1,

or

π ′ = e.

(27)

Applying the same argument repeatedly, and using the triangle
inequality proves that dϕ(π, e) ≤ 1

2 Dϕ(π, e) if Nπ
21 ≥ 1

or Nπ
23 ≥ 1. This, along with (26), shows that dϕ(π, e) =

1
2 Dϕ(π, e) if Nπ

21 ≥ 1 or Nπ
23 ≥ 1.

First, suppose that Nπ
21 ≥ 1 and Nπ

23 ≥ 1. It then follows
that Nπ

12 ≥ 1 or Nπ
32 ≥ 1. Without loss of generality, assume

that Nπ
12 ≥ 1. Then τl can be chosen such that Nπ ′

12 = Nπ
12−1

and Nπ ′
21 = Nπ

21 − 1. We have Dϕ(π ′, e) = Dϕ(π, e)− 2, and
since Nπ

23 ≥ 1, condition (27) holds.
Next, suppose Nπ

21 ≥ 1 and Nπ
23 = 0. If Nπ

13 ≥ 1, choose τl

such that

Nπ ′
21 = Nπ

21 − 1,

Nπ ′
23 = 1,

Nπ ′
13 = Nπ

13 − 1,

where π ′ = πτl . Since Nπ ′
23 = 1, condition (27) is satisfied.

If Nπ
13 = 0, then Nπ

31 = Nπ
32 = 0, and thus Nπ

12 = Nπ
21 ≥ 1.

In this case, we choose τl such that Nπ ′
21 = Nπ ′

12 = Nπ
12 − 1.

As a result, we have either Nπ ′
21 ≥ 1 or π ′ = e. Hence,

condition (27) is satisfied once again. Note that in both cases,
for Nπ

13 = 0 as well as for Nπ
13 ≥ 1, we have Dϕ(π ′, e) =

Dϕ(π, e)− 2.
The proof for the case Nπ

23 ≥ 1 and Nπ
21 = 0 follows along

similar lines.
If Nπ

21 = Nπ
23 = 0, it can be verified by inspection

that for every transposition τl with dϕ(τl , e) = 1, we have
Dϕ(πτl , e) ≥ Dϕ(π, e). Hence, the inequality in (26) cannot
be satisfied with equality, which implies that dϕ(π, e) ≥
2Nπ

13 + 1. Choose a transposition τl with dϕ(τl, e) = 1 such
that

Nπ ′
13 = Nπ

13 − 1,

Nπ ′
12 = 1,

Nπ ′
23 = 1.

where π ′ = πτl . We have

dϕ(π, e) ≤ dϕ(τl, e)+ dϕ(π ′, e) = 1+ 2Nπ
13.

This, along with dϕ(π, e) ≥ 2Nπ
13 + 1, completes the proof.

C. The Average Kendall and Weighted Kendall Distances

The Kendall τ distance between two rankings may be
viewed in the following way: each pair of candidates on which
the two rankings disagree contribute one unit to the distance
between the rankings. Owing to Algorithm 1, the weighted
Kendall distance with a decreasing weight function can be
regarded in a similar manner: each pair of candidates on which
the two rankings disagree contributes ϕ(s s+1), for some s, to
the distance between the rankings.

Consider a pair a and b such that π−1(b) < π−1(a) and
σ−1(a) < σ−1(b). In Algorithm 1, there exists a transposition
τ �

t = (s s + 1) that swaps a and b where

s = π−1(b)+
∣
∣∣
{

k : σ−1(k) < σ−1(a), π−1(k) > π−1(b)
}∣∣∣ ,

that is, s equals π−1(b) plus the number of elements that
appear before a in σ and after b in π . It is not hard to see
that s can also be written in a way that is symmetric with
respect to π and σ, as

s = π−1(b)+ σ−1(a)

−
∣
∣
∣
{

k : π−1(k) < π−1(b), σ−1(k) < σ−1(a)
}∣∣
∣− 1

= n − 1−
∣
∣
∣
{

k : π−1(k) > π−1(b), σ−1(k) > σ−1(a)
}∣∣
∣ .

As an example, consider ϕ(i i+1) = n − i . Then, dϕ(π, σ )
equals

∑

(b,a)∈I (π,σ )

(
1+

∣
∣
∣
{

k : π−1(k) > π−1(b), σ−1(k) > σ−1(a)
}∣∣
∣
)

= K (π, σ )+
∑

(b,a)∈I (π,σ )

∣
∣
∣
{

k : π−1(k) > π−1(b), σ−1(k) > σ−1(a)
}∣∣
∣ ,

where I (π, σ ) is the set of ordered pairs (b, a) such that
π−1(b) < π−1(a) and σ−1(a) < σ−1(b). Note that the
weighted Kendall distance dϕ equals the Kendall τ distance
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plus a sum that captures the influence of assigning higher
importance to the top positions of the rankings.

We now compute the expected value of the weighted
Kendall distance with weight function ϕ between the identity
permutation and a randomly and uniformly chosen permuta-
tion π ∈ Sn . For 1 ≤ a < b ≤ n and s ∈ [n − 1], let
Xs

ab be an indicator variable that equals one if and only if
π−1(a) > π−1(b) and

∣∣
∣
{

k > a : π−1(k) > π−1(b)
}∣∣
∣ = n − 1− s.

The expected distance between the two permutations equals

E[dϕ(π, e)] =
n−1∑

s=1

ϕ(s s+1)

n−1∑

a=1

n∑

b=a+1

E
[
Xs

ab

]
. (28)

By the definition of Xs
ab, E

[
Xs

ab

]
equals the probability of

the event that n− 1− s elements of {a+ 1, . . . , n}\{b} and a
appear after b in π . There are

(n−a−1
n−s−1

)
ways to choose n−s−1

elements from {a+1, . . . , n}\{b}, ( n
a−1

)
(a−1)! ways to assign

positions to the elements of {1, 2, . . . , a−1}, (s−a)! ways to
arrange the s − a elements of {a + 1, . . . , n}\{b} that appear
before b, and (n − s)! ways to arrange a and the n − 1 − s
elements of {a + 1, . . . , n}\{b} that appear after b. Hence,

E
[
Xs

ab

] = 1

n!
(

n − a − 1

n − s − 1

)(
n

a − 1

)
(a − 1)!(s − a)!(n − s)!

= n − s

(n − a + 1)(n − a)
,

for 1 ≤ a ≤ s, and E
[
Xs

ab

] = 0 for a > s. By using these
expressions and (28), we obtain

E[dϕ(e, π)] =
n−1∑

s=1

ϕ(s s+1)

s∑

a=1

n − s

n − a + 1

=
n−1∑

s=1

ϕ(s s+1)(n − s)(Hn − Hn−s),

where Hi = ∑i
l=1

1
l . Indeed, for ϕ(s s+1) = 1, s ∈ [n − 1],

we recover the well known result that

E[dϕ(e, π)] =
n−1∑

s=1

(n − s)(Hn − Hn−s)

=
n−1∑

k=1

k(Hn − Hk)

= 1

2

(
n

2

)
.

For ϕ(s s+1) = n − s, the average distance equals

E[dϕ(e, π)] =
n−1∑

s=1

(n − s)2(Hn − Hn−s)

=
n−1∑

k=1

k2(Hn − Hk)

= 1

2

(
n

2

)
+ 2

3

(
n

3

)
.
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