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Multipermutation Codes in the Ulam Metric for
Nonvolatile Memories

Farzad Farnoud (Hassanzadeh) and Olgica Milenkovic

Abstract—We address the problem of multipermutation code
design in the Ulam metric for novel storage applications. Mul-
tipermutation codes are suitable for flash memory where cell
charges may share the same rank. Changes in the charges of
cells manifest themselves as errors whose effects on the retrieved
signal may be measured via the Ulam distance. As part of
our analysis, we study multipermutation codes in the Hamming
metric, known as constant composition codes. We then present
bounds on the size of multipermutation codes and their capacity,
for both the Ulam and the Hamming metrics. Finally, we present
constructions and accompanying decoders for multipermutation
codes in the Ulam metric.

Index Terms—Constant composition code, deletion, flash mem-
ory, frequency permutation array, Hamming metric, multiper-
mutation code, permutation code, rank modulation, re-writing
code, translocation, Ulam metric.

I. INTRODUCTION

PERMUTATIONS and multipermutations as information
representation formats have a long history, with early

applications in communication theory dating back to the work
of Slepian [1], who proposed using multipermutation codes
for transmission in the presence of additive white Gaussian
noise. More recently, Vinck proposed using permutation codes
in the Hamming metric for combatting impulse noise and
permanent frequency noise in power grids [2]. Permutation
codes have received renewed interest in the past few years
due to their promising application in storage systems, such as
flash memories [3]–[5].

Flash memories are nonvolatile storage units (i.e., storage
units that remain operational when unpowered), and are usu-
ally used for archival or long-term storage. Information is
organized in blocks of cells, all of which have to be processed
jointly during information erasure cycles. The gist of the
approach underlying permutation coding in flash memories,
which uses the fact that the memories consist of specially
organized cells storing charges, is that information is repre-
sented via the relative order of charge levels of cells rather
than their absolute charge levels [3]. This approach, termed
rank modulation, alleviates the problems of cell over-injection,
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reduces the need for block erasures, and is more robust to
errors caused by charge leakage [3]. For instance, while all
absolute values are subject to errors caused by charge leakage,
the relative ordering of the quantitative data may remain
largely unchanged [6]. The modeling assumption behind rank
modulation is that only errors swapping adjacently ranked cell
charges are likely [4], [6]. As a result, code design for flash
memories was mainly performed in the domain of the Kendall
τ metric, which accounts for small magnitude errors causing
swaps of adjacent elements. A thorough treatment of codes in
the Kendall metric may be found in [4] and references therein.

In contrast, a more general error model was proposed by
the authors in [7], based on the observation that increasing
the number of charge levels in order to increase capacity
decreases the difference between adjacent charge levels and
thus unwanted variations in the charge of a cell may cause
its rank to rise above or fall below the ranks of several
other cells instead of only swapping two adjacent ranks. In
addition, the proposed translocation error model adequately
accounts for more general types of error such as read-disturb
and write-disturb errors. In this context, the distance measure
of interest is the Ulam distance, related to the length of
the longest common subsequence of two permutations and
consequently, the deletion/insertion or edit distance [8]. The
Ulam distance has also received independent interest in the
bioinformatics and the computer science communities for the
purpose of measuring the “sortedness” of data [9]. Other
metrics used for permutation code construction include the
Hamming distance [2], [10] and the Chebyshev distance (the
�∞ metric) [11], [12].

Multipermutation codes are a generalization of permutation
codes where each message is encoded as a permutation of
the elements of a multiset. Multipermutation codes in the
Hamming metric, known as constant composition codes or
frequency permutation arrays (FPAs), were studied in several
papers including [13]–[16]. For nonvolatile memories, multi-
permutation coding was proposed by En Gad et al. [17], as
well as by Shieh and Tsai [18]. These works were motivated
by different considerations – the former aiming to increase the
number of possible re-writes between block erasures, and the
latter focusing on the advantages of multipermutation coding
with respect to cell leakage, over-injection issues, and charge
fluctuations. In addition, multipermutation codes were also
recently reported for the Chebyshev distance in [18], [19] and
for the Kendall τ distance in [20], [21].

Here, we continue our study of codes in the Ulam metric
for nonvolatile memories by extending it to the level of
multipermutation codes. Our results include bounds on the
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size of the largest multipermutation codes and code construc-
tions using multipermutation codes in the Hamming metric
and interleaving as well as permutation codes in the Ulam
metric [7], [22]. In the process of analyzing these schemes,
we establish new connections between resolvable balanced
incomplete block designs (RBIBDs) [23], [24], semi-Latin
squares [25], and multipermutation codes in the Ulam metric.
As multipermutation codes in the Hamming metric are used
in our constructions, we also provide new bounds on the size
of these codes, and find their asymptotic capacity. In addition,
our results include simple decoding schemes for the proposed
constructions based on designs and those based on interleaving
permutation codes in the Ulam metric.

The paper is organized as follows. In Section II, we present
the notation used throughout the paper as well as formal
definitions regarding multipermutation codes. In addition, this
section includes motivating examples for our work. Section III
is devoted to bounds on the size of multipermutation codes in
the Ulam and Hamming metrics, as well as to the computation
of the asymptotic capacity of these codes. Section IV provides
constructions for codes in the Ulam metric. We conclude the
paper in Section V with a summary of our results and a number
of remarks.

II. PRELIMINARIES AND NOTATION

A. Multipermutations, ordered set partitions, and codes

For an integer k, let [k] = {1, . . . , k}. Furthermore, let
Sn denote the symmetric group of order n!, i.e., the set of
permutations of n distinct elements (typically the elements of
[n]).

A multipermutation is an arrangement of the elements of
a multiset. For example, (2, 1, 2, 3, 1, 2) is a multipermutation
of {1, 1, 2, 2, 2, 3}. For a positive integer n and a multiplicity
vector �r = (r1, . . . , rm), such that n =

∑m
i=1 ri, we use

M(n,�r) to denote the multiset

{1, . . . , 1︸ ︷︷ ︸
r1

, 2, . . . , 2︸ ︷︷ ︸
r2

, . . . ,m, . . . ,m︸ ︷︷ ︸
rm

}.

A multiset that has r copies of each of its elements is termed
an r-regular multiset. For brevity, we henceforth denote the
r-regular multiset M(n, (r, · · · , r)) by M(n, r). An r-regular
multipermutation is a permutation of an r-regular multiset.
Throughout the paper, we focus on r-regular multipermuta-
tions. Many of the subsequently described results, however,
can easily be extended to multipermutations of M(n,�r) for
general multiplicity vectors �r.

Let n also denote the number of cells in a block of a flash
memory. We assume that r is a positive integer that divides n.
Consider a permutation π ∈ Sn that lists the cells in decreasing
order of charge. For example, π = (3, 2, 4, 1) means that cell
3 has the highest charge, cell 2 has the second-highest charge,
and so on. The inverse of π is the vector of the ranks of the
cells, π−1 = (4, 2, 1, 3); cell 1 has rank 4, cell 2 has rank 2,
and so on.

To obtain an r-regular multipermutation of cell rankings,
instead of assigning rank i to the element in position i in π,
we assign rank i to all the elements in positions {(i− 1)r +

1, . . . , ir}. This multipermutation is denoted by mr
π, where

mr
π(j) = i, iff (i − 1)r + 1 ≤ π−1(j) ≤ ir.

For instance, given n = 4, r = 2, and π = (3, 2, 4, 1), we
have m2

π = (2, 1, 1, 2).
Observe that for π ∈ Sn, mr

π is a multipermutation of
M(n, r) and that for r = 1, the multipermutation mr

π reduces
to the inverse of π, i.e., m1

π = π−1.
A multipermutation m of M(n, r) can also be represented

as an ordered set partition o, where the ith part of o is the set

o(i) = {j : m(j) = i} .
This definition can naturally be extended to multipermutations
of other multisets. For π ∈ Sn, let orπ be an ordered set
partition where

orπ(i) = {j : mr
π(j) = i} .

For the aforementioned example π = (3, 2, 4, 1), we have
o2π = ({2, 3}, {1, 4}).

For π, σ ∈ Sn, we write π ≡r σ if mr
π = mr

σ, and π �≡r σ
otherwise. It is easy to show that ≡r is an equivalence relation.
The equivalence class of permutations including π is denoted
by Rr(π), i.e.,

Rr(π) = {σ : σ ≡r π}.
As an illustration, the equivalence class of (3, 2, 4, 1) under

≡2 equals

R2((3, 2, 4, 1)) =

{(3, 2, 4, 1), (2, 3, 4, 1), (3, 2, 1, 4), (2, 3, 1, 4)}. (1)

In this case, the set R2((3, 2, 4, 1)) is isomorphic to the
subgroup S2 × S2 of S4.

Let S be a set of size n. An r-regular multipermutation
code MPC(n, r) over S is a code C whose codewords are
permutations of S with the property that for any π ∈ C,
Rr(π) ⊆ C. For example,

{(2, 3, 1, 4), (3, 2, 1, 4), (2, 3, 4, 1), (3, 2, 4, 1),
(1, 3, 2, 4), (3, 1, 2, 4), (1, 3, 4, 2), (3, 1, 4, 2)} (2)

is an MPC(4, 2) code. We typically assume that S = [n], but
the results hold for any set S of size n.

Each permutation in C represents an ordering of cell
charges. For example π = (1, 3, 2, 4) indicates that the cell
1 has the highest charge, followed by cell 3, and so on.
In multipermutation coding, each r cells are assigned the
same rank and all permutations corresponding to the same
multipermutation encode the same information. In the previous
example, the multipermutation (2, 1, 1, 2) may be represented
by any of the permutations on the right side of (1).

As a result, it is clear that an MPC(n, r) code C can be
represented as a set of multipermutations Mr(C), where

Mr(C) = {mr
π : π ∈ C},

or as a set of ordered set partitions Or(C), where

Or(C) = {orπ : π ∈ C}.
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Fig. 1. The two equivalence classes of the code given in (2). The numbers on the top of the bars indicate cell indices, while the heights of the bars represent
the charge levels of the indicated cells. The equivalence classes on the left and right correspond to the multipermutations m = (2, 1, 1, 2) and m = (1, 2, 1, 2),
respectively. Note that each multipermutation can be programmed into the memory as four different permutations, each representing a complete ranking of
cell charges without ties.

For example, if C is the code given in (2), we have

M2(C) = {(2, 1, 1, 2), (1, 2, 1, 2))},
O2(C) = {({2, 3}, {1, 4}) , ({1, 3}, {2, 4})} .

With slight abuse of notation, for an MPC(n, r) C, we may
use C to mean Mr(C) or Or(C) if doing so does not lead
to ambiguity. Similarly, we may consider C to be a set of
multipermutations or a set of ordered set partitions instead of
a set of permutations.

The cardinality or the size of C, denoted by |C|, equals the
number of multipermutations in Mr(C), or equivalently, the
number of equivalence classes of C under the relation ≡r.

In what follows, we describe why multipermutation formats
are suitable for flash memory coding applications. We start
with the readback process. To be able to read the information
stored in a flash memory, cells with different ranks must have
charge levels that differ by at least a certain amount Δ, since if
the difference between charge levels of two cells is too small,
it cannot be reliably decided which one had the higher charge
level. Hence, in permutation coding, to store a permutation of
length n, the range of possible charge values must be at least
nΔ to allow for n different charge levels corresponding to
n different ranks. In contrast, an r-regular multipermutation
of length n has only n/r ranks and thus it can be stored in
a flash memory whose range of possible charge level values
is nΔ/r. Specifically, the relative order of charge levels of
cells of the same rank of a multipermutation is irrelevant as
all possibilities correspond to the same multipermutation, i.e.,
the same information message.

Note that in order to store information represented by r-
regular multipermutations, charges are injected to achieve a
desired multipermutation ranking. As it is neither necessary
nor possible for cells of the same rank to have precisely the
same charge levels, the actual representation of such a multi-
permutation m is some permutation π, such that mr

π = m. The
multipermutation is available to the user retrieving information
in the form of the cell charge ordering π. As an illustration,
consider Figure 1 for the code given in (2). For instance, to
store the multipermutation (2, 1, 1, 2), any of the permutations
given in (1) may be programmed into the memory. To retrieve
the information, the user reads the permutation, or possibly an
erroneous copy of it, and performs error correction to identify
the multipermutation corresponding to the stored permutation.

Next, we show how multipermutations can achieve a higher
information rate compared to permutations. Consider a flash

memory that can accommodate m sufficiently spread charge
levels. In a group of m cells of such a device, one can store
a permutation of length m. Suppose r is a positive integer.
It follows that in mr cells, the number of possible messages
that can be stored is (m!)

r.
On the same device, one can store an r-regular multi-

permutation of length mr in mr cells. In this case, the
number of possible messages equals the number of possible
multipermutations, i.e., (mr)!

(r!)m . It is clear that for r ≥ 2, we
have

(mr)!

(r!)m
> (m!)

r
.

Hence, in this setting, more information messages can be
stored if one uses multipermutations instead of permutations.

As an illustration, suppose that m = 2 and r = 10. Using
multipermutations, we can store

lg
(mr)!

(r!)
m ≈ 17.5 bits

while using permutations, we can store

lg (m!)
r
= 10 bits

in 20 cells. Note that here we considered the uncoded regime.
The saving in the number of possible charge levels can also

be used to increase the number of possible re-writes before
a block erasure becomes necessary [17]. As an example,
suppose that 5 charge levels are available. If one uses per-
mutations of length 5, it is only possible to write once before
an erasure becomes necessary, and if one uses permutations
of length 3, it is possible to write twice before an erasure.
Encoding with r-regular multipermutations of length 3r also
provides the ability to write twice before an erasure. While
both methods, permutation coding and multipermutation cod-
ing, allow for writing twice before an erasure, using multi-
permutations leads to a higher information storage rate. For
further details on multipermutation re-write codes, we refer
the reader to [17].

Before proceeding with an analytical treatment of multiper-
mutation codes in the Ulam metric, we remark that throughout
the paper, we use Z

+ to denote the set of positive integers.
Whenever it is clear from the context, we use the well-known
result that lnx! = x lnx + O(x), for any nonnegative real
value x. By convention, we adopt 0 ln 0 = 0.



922 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 32, NO. 5, MAY 2014

3

1

2 4

σ=(4,2,5,3,1,6)

5

6

3

1

2
4

ω=(2,4,5,3,1,6)

5

6
Error

(a) m2
σ = m2

ω = (3, 1, 2, 1, 2, 3).

3

1

2 4

σ=(4,2,5,3,1,6)

5

6

3

1

2

4

ω=(2,5,3,1,4,6)

5

6
Error

(b) m2
σ = (3, 1, 2, 1, 2, 3), m2

ω = (2, 1, 2, 3, 1, 3).

Fig. 2. Examples of errors: A small-magnitude charge drop error (a) manifests itself as a swap of adjacent ranks in the permutation while a large-magnitude error
(b) manifests itself as a translocation in the permutation. In multipermutation coding, charge fluctuations may or may not lead to erroneous multipermutations.
Assuming r = 2, in (a) the multipermutation does not change, while in (b) it does.

B. The Multipermutation Hamming distance

For an integer r, the r-regular Hamming distance (or simply
the Hamming distance) drH between two permutations π, σ ∈
Sn is defined as

drH(π, σ) = |{i : mr
π(i) �= mr

σ(i)}| .
In words, the permutations are first converted into multiper-
mutations, which are subsequently compared coordinate-wise.
The distance d1H (π, σ) is equivalent to the ordinary Hamming
distance between π and σ. Thus, instead of d1H , we write dH .

We observe that

drH(π, σ) =

n/r∑
i=1

(r − |orπ(i) ∩ orσ(i)|)

=

n/r∑
i=1

(|orπ(i)| − |orπ(i) ∩ orσ(i)|)

=

n/r∑
i=1

|orπ(i)\orσ(i)| .

Furthermore,

drH(π, σ) = min
π′∈Rr(π)

min
σ′∈Rr(σ)

dH(π′, σ′).

Let C be an MPC(n, r) code. The code C has minimum
Hamming distance d if for all π, σ ∈ C with π �≡r σ, we
have drH(π, σ) ≥ d. Equivalently, since for all π ∈ C, Rr(π)
is contained in C, the code C has minimum Hamming distance
d if for all π, σ ∈ C with π �≡r σ, it holds that dH(π, σ) ≥ d.
An MPC(n, r) code with minimum Hamming distance d is
said to be an MPCH(n, r, d) code. The code given in (2) is
an MPCH(4, 2, 2) code.

C. Translocation errors and the Ulam distance

Figure 2 illustrates examples of errors in flash memories
that may occur due to charge leakage, read-disturb, and write-
disturb [26]. While errors with small magnitude represent
swaps of adjacent ranks, errors with large magnitude represent
translocations [7].

A translocation φ(i, j) is a permutation that is obtained from
the identity permutation e by moving element i to the position

of j and shifting all elements between i and j, including j,
by one [7]. For example, for i < j,

φ(i, j) = (1, . . . , i− 1, i+ 1, i+ 2, . . . , j, i, j + 1, . . . , n).

As a convention, we assume that φ(i, i) = e. A translocation
error is an error that changes a stored permutation π to
πφ(i, j), with i �= j.

A subsequence of a vector x = (x (1) , x (2) , . . . , x (n))
is a sequence (x (i1) , x (i2) , . . . , x (ik)), where i1 < i2 <
· · · < ik and k ≤ n. A common subsequence of two vectors
x and y is a sequence that is a subsequence of both x and
y. Let the length of the longest common subsequence of
two permutations π and σ be denoted by LCS(π, σ). The
Ulam distance d◦ (π, σ) between two permutations π and σ
of length n is defined as n− LCS(π, σ). It is straightforward
to see that the Ulam distance between π and σ equals the
minimum number of translocations required to take π to σ [7].
It is also well known that the Ulam distance represents the
edit distance between two permutations, i.e., the smallest
number of insertion/deletion pairs needed to transform one
permutation into another.

For π, σ ∈ Sn, define the (r-regular) Ulam distance dr◦ on
permutations as

dr◦(π, σ) = min
π′∈Rr(π)

min
σ′∈Rr(σ)

d◦(π
′, σ′).

Note that this distance is a set-distance: it measures the
smallest Ulam distance between two permutations in different
equivalence classes. Furthermore, the distance dr◦(π, σ) equals
the minimum number of translocations required to take a
permutation in Rr(π) to a permutation in Rr(σ).

Let U∗
r(π, σ) denote the set

{(α, β) : α ∈ Rr(π), β ∈ Rr(σ), d
r
◦(π, σ) = d◦(α, β)}.

By definition of dr◦(π, σ), U
∗
r(π, σ) is nonempty.

An MPC(n, r) C has minimum Ulam distance d if for
all π, σ ∈ C with π �≡r σ, we have dr◦(π, σ) ≥ d. Such a
code is denoted by MPC◦(n, r, d). The code given in (2) is
an MPC◦(4, 2, 1) code, as dr◦ ((3, 2, 1, 4), (3, 1, 2, 4)) = 1.

Under minimum distance decoding, an MPC◦(n, r, d) code
can correct t translocation errors iff d ≥ 2t+ 1. To see this,
note that d < 2t + 1 iff there exists π, σ ∈ C, π �≡r σ, and
ω ∈ Sn such that dr◦(ω, π) ≤ t and dr◦(ω, σ) ≤ t, iff C cannot
correct t errors.
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For a set P and a permutation π, let πP denote the
projection of π onto P , that is, the sequence obtained by
only keeping those elements of π that are in P . We find the
following lemma, proved in our companion paper [7], useful
in our subsequent derivations.

Lemma 1. For sets P ⊆ [n] and Q = [n]\P , and for
permutations π, σ ∈ Sn, we have

d◦(π, σ) ≥ d◦(πP , σP ) + d◦(πQ, σQ).

D. Relationship between the Ulam and the Hamming metrics

The following lemma is an immediate consequence of the
definition of a translocation.

Lemma 2. A translocation, applied to a permutation, changes
at most one element of each rank. That is, for a translocation
ϕ, a permutation π, and i ∈ [n/r],∣∣orπ(i) ∩ orπϕ(i)

∣∣ ≥ r − 1.

Since there are n/r ranks, we have

drH(π, πϕ) ≤ n

r
,

for a translocation ϕ and a permutation π. Hence,

drH(π, σ) ≤ n

r
dr◦(π, σ)

for π, σ ∈ Sn.
We next upper bound dr◦(π, σ) in terms of drH(π, σ). There

exist π′ ∈ Rr(π), σ′ ∈ Rr(σ), and a common subsequence of
π′ and σ′ that contains the elements of

n/r⋃
i=1

(orπ(i) ∩ orσ(i)) .

Hence,

dr◦(π, σ) ≤ n− LCS(π′, σ′)

≤ n−
n/r∑
i=1

|orπ(i) ∩ orσ(i)|

=

n/r∑
i=1

(r − |orπ(i) ∩ orσ(i)|)

= drH(π, σ),

implying that dr◦(π, σ) ≤ drH(π, σ).

Lemma 3. For π, σ ∈ Sn, we have

r

n
drH(π, σ) ≤ dr◦(π, σ) ≤ drH(π, σ).

The lemma illustrates the fact that for r = Θ(n), the Ulam
distance is within a constant factor of the Hamming distance,
while for r = o(n), the Ulam distance may be much smaller.
Consequently, while good codes in the Ulam metric allow
for substitution error correction, good codes in the Hamming
metric provide resilience under translocation errors only for a
certain limited range of parameters.

III. BOUNDS ON SIZE OF MULTIPERMUTATION CODES

In what follows, we derive bounds on the size of mul-
tipermutation codes in the Hamming metric as well as the
Ulam metric. For the case of the Hamming distance, we
find the asymptotic capacity, while for the Ulam distance we
provide lower and upper bounds on the capacity. We point
out that a number of bounds on multipermutation codes in
the Hamming metric were derived in [15], including some
simple and some complicated expressions involving Laguerre
polynomials. Nevertheless, these bounds do not allow for
finding a capacity formula for the underlying codes.

Let AH(n, r, d) and A◦(n, r, d) denote the maximum car-
dinalities of an MPCH(n, r, d) and an MPC◦(n, r, d) code,
respectively. Furthermore, let CH(r, d) denote the capacity,
i.e., maximum achievable rate, of multipermutation codes in
the Hamming metric, defined as

CH(r, d) = lim
n→∞

lnAH(n, r, d)

lnn!
·

The capacity of multipermutation codes in the Ulam metric,
C◦(r, d), is defined similarly.

In the remainder of the paper, limits are evaluated for n →
∞ unless stated otherwise. We assume that all limits of interest
exist and we use ρ = ρ(r) = lim ln r

lnn , as well as δ = δ(d) =
lim d

n ·

A. Multipermutation Codes in the Hamming Metric

It was shown by Luo et al. [13] that

AH(n, r, d) ≤ d

r + d− n
, for r + d > n, (3)

and by Huczynska and Mullen [15] that

AH(n, r, d) ≤ n!

r(d − 1)!
· (4)

The first bound, (3), implies that the asymptotic rate is zero
if r + d > n, while the second bound implies that

CH(r, d) ≤ 1− δ, (5)

which also follows from the fact that CH(r, d) ≤ CH(1, d)
and Theorem 11 of our companion paper [7], stating that
CH(1, d) = 1 − δ. We improve next upon the bound in (5)
and provide a matching lower bound, thereby establishing the
capacity of r-regular multipermutation codes in the Hamming
metric.

Let S(l,m, r) denote the number of sequences of length l
over the alphabet [m], with no element appearing more than
r times. Note that S(l,m, r) equals the number of ordered
partitions of a set of size l into m sets such that each part has
at most r elements, and where empty subsets are allowed.

Lemma 4. (Singleton bound) For positive integers n, r, d such
that r divides n, we have

AH(n, r, d) ≤
(n
r

)n−d+1

.

Proof: Consider an MPCH(n, r, d) code C of size M and
let

M = Mr(C) = {m1, . . . ,mM}
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denote its multipermutation representation. Since the mini-
mum Hamming distance drH of C is at least d, for distinct
i and j,

n∑
k=1

I (mi(k) �= mj(k)) ≥ d, (6)

where the indicator function I is defined in the standard
manner as

I(condition) =

{
1, if condition is true,
0, if condition is false.

By removing the last d−1 elements of each multipermutation
mi, i ∈ [M ], we obtain the set M′ = {m′

1, . . . ,m
′
M} of

sequences of length n − d + 1 over [n/r] where no element
appears more than r times.1

Since d− 1 elements are removed, (6) implies that
n−d+1∑
k=1

I
(
m′

i(k) �= m′
j(k)

)
=

n−d+1∑
k=1

I (mi(k) �= mj(k)) ≥ 1.

and thus for distinct i, j ∈ [M ], m′
i and m′

j are distinct. Hence,
we have

AH(n, r, d) ≤ S
(
n− d+ 1,

n

r
, r
)
. (7)

Furthermore, since S(n−d+1, n/r, r) ≤ S(n−d+1, n/r,∞),
we find

AH(n, r, d) ≤ S
(
n− d+ 1,

n

r
,∞
)
=
(n
r

)n−d+1

.

As shown in the sequel, the bound given in Lemma 4 is
sufficiently tight for capacity derivations. Nevertheless, it may
be useful to bound S(l,m, r) more tightly.

It is easy to see that

S(l,m, r) =
∑

x1 + · · ·+ xm = l,
0 ≤ xi ≤ r

l!∏m
i=1 xi!

· (8)

where the xi’s are integers. The exponential generating func-
tion (EGF) of S(l,m, r) is

∞∑
l=0

S(l,m, r)
zl

l!
=

(
r∑

i=0

zi

i!

)m

and thus one can write

AH(n, r, d) ≤ (n− d+ 1)!
[
zn−d+1

]( r∑
i=0

zi

i!

)n/r

· (9)

The bound given in (9) can be used to find numerical upper
bounds on the code size, such as those provided in Table I. In
addition, it can be used to obtain simple asymptotic bounds
using methods described in the classical text [27, Ch. 8]. As a
final note, we point out that the related problems of restricted
multisets and restricted integer partitions are far better studied
combinatorial entities than the one we addressed above [28,
Ch. 21, Sec. 8], although no simple direct connection between
these problems and the problem discussed here exist.

1This argument is akin to the approach proposed in [4] for permutation
codes in the Kendall metric.

Another approach, which is conceptually much simpler
and which applies to many other coding-theoretic scenarios
is using the Poisson approximation theorem for multinomial
variables and the Chernoff bound [29], [30], or alternatively,
the Central limit theorem [31]. As shown in [31], [32], the
number of terms in the multinomial summation formula,
m, may represent the number of labeled urns into which l
labeled balls are thrown randomly. The occupancy variables
Xi, i = 1, . . . ,m, are dependent, since X1+. . .+Xm = l. But
in the asymptotic central domain regime, with l/m constant,
the variables Xi, i = 1, . . . ,m, may be viewed as independent
Poisson variables with mean λ = l/m. Any result of computa-
tions involving independent Poisson variables that satisfies the
inversion conditions dictated by Tauberian theorems described
in [32] may be asymptotically converted into the correct
result by simply replacing λ with l/m. Furthermore, the same
approach may be used when dealing with urns and balls that
satisfy additional constraints [32].

To understand the principles behind the Poisson transform
method, we follow the analysis in [31] based on [33]. The
key observation is that the Poisson distributions satisfy the
additivity (infinite divisibility) property, i.e., the property that
the sum of independent Poisson random variables is another
Poisson random variable with mean parameter equal to the
sum of the parameters of the individual variables in the sum.
Then, it is straightforward to show that for two different
ball placement processes, the urn occupancy variables have
the same distribution: 1) in the first case, each urn receives
balls according to a Poisson distribution with parameter λ
independently of all other urns; 2) in the second case, balls
arrive with a Poisson distribution with parameter λm and are
routed with uniform probability 1/m to one of the urns.

Assume next that g(m,λ) is a quantity of interest where
the input to each urn is generated according to model 1). The
same quantity under the original urns and balls model with
a fixed number l of balls is denoted by f(m, l). Using the
equivalence between the two formulations 1) and 2), one can
show that

g(m,λ) =
∑
l

f(m, l) P (X1 + . . .+Xm = l) ,

where X1, . . . , Xm are i.i.d Poisson random variables with
parameter λ. As a result, it is straightforward to see that
f(m, l) = l!

ml [λl]
{
eλmg(m,λ)

}
.

In words, eλmg(m,λ) represents the exponential generating
function over the number of balls l of f(m, l) evaluated
at λm. Evaluating the coefficient in a generating function
in the asymptotic domain may be accomplished with the
aid of Tauberian theorems (see [32]) or classical asymptotic
analysis. In the case of the Poisson transform, provided that
some minor technical conditions are met, it can be shown
that f(m, l) � g(m, l/m), where a(x) � b(x) stands for
limx→∞ a(x)/b(x) = 1. Intuitively, the aforementioned result
implies that when the dependencies among a large number
of random variables are weak – for example, only in terms
of a constraint on the total sum of their values – then the
variables are asymptotically independent, provided a proper
choice of the distribution ensures consistence with the finite-
valued parameters.
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TABLE I
BOUNDS ON THE SIZE 3-REGULAR MULTIPERMUTATION CODES IN THE HAMMING METRIC OF LENGTH 9.

Upper bound on AH (9, 3, d) d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8 d = 9

(3) [13] - - - - - - 7 4 3
(4) [15] 120960 120960 60480 20160 5040 1008 168 24 3

Lemma 4 19683 6561 2187 729 243 81 27 9 3
(11) (approximate bound) 12077 4560 1700 624 224 79 27 9 3

(9) 1680 1680 1050 510 210 78 27 9 3

In the case of interest, we need to find the probability
P{Xi ≤ r, i = 1, . . . ,m}. For m, l → ∞, such that l/m
is a constant, and for r fixed, this leads to

S(l,m, r) � ml

(
r∑

i=0

exp(−λ)
λi

i!

)m

,

where λ = l/m. The asymptotic formula for S(l,m, r)
depends on the relationship between the parameters r, l,m.
For r ≤ l/m, the Chernoff bound reads as

r∑
i=0

exp(−λ)
λi

i!
≤ exp(−λ)(e λ)r

rr
,

so that
S(l,m, r) � ml exp(−l/m)(e l/m)r

rr
· (10)

For the case of interest in our derivation, r > l/m.
Whenever r > 10, one may use the straightforward Central
Limit Theorem approximation

r∑
i=0

exp(−λ)
λi

i!
� Φ

(
r + 0.5− l/m√

l/m

)
,

so that

S(l,m, r) � ml Φm

(
r + 0.5− l/m√

l/m

)
,

where the function Φ(·) stands for the cumulative distribution
function (CDF) of a standard Gaussian random variable. Since
r > n−d+1

n/r , the preceding relation and (7) imply

AH(n, r, d) �
(n
r

)n−d+1

Φn/r

(
n+ 2(d− 1)r

2
√
n(n− d+ 1)r

)
(11)

provided that n−d+1
n/r is a constant larger than 10.

As an example, upper bounds on the size of MPCH(9, 3, d)
are given in Table I. Note that the bounds of (11), Lemma 4,
and (9) are very close for small values of d. Indeed, the right
side of (11) is bounded above by (n/r)n−d+1 and below by(n

r

)n−d+1
(
1

2

)n/r

and we have

lim
ln
((

n
r

)n−d+1 ( 1
2

)n/r)
ln
(
n
r

)n−d+1
= 1

provided that δ < 1 and r < n. Therefore, the bounds of (11)
and Lemma 4 have the same asymptotic exponent.

The next lemma provides a lower bound on AH(n, r, d).

Lemma 5. (Gilbert-Varshamov Bound) We have

AH(n, r, d) ≥ n!

(r!)n/r
(

n
d−1

) (
n
r

)d−1
·

Proof: There are n!
(r!)n/r multipermutations of M(n, r).

The size of a ball of radius d − 1 in the space of multiper-
mutations of M(n, r) endowed with the Hamming distance is
bounded above by

(
n

d−1

) (
n
r

)d−1 (an exact and complicated
expression for the size of the ball may be found in [15]).
The Lemma follows by a standard application of Gilbert’s
argument.

Theorem 6. We have

CH(r, d) = (1− ρ)(1 − δ).

Proof: First, recall that lim expressions with no subscripts
stand for limn→∞.

On the one hand, from Lemma 4, we have

CH(r, d) ≤ lim
(n− d+ 1)(lnn− ln r)

lnn!

= lim
n lnn− n ln r − d lnn+ d ln r

n lnn+O(n)

= 1− ρ− δ + ρδ.

On the other hand, from Lemma 5, we easily see that

CH(r, d) ≥ lim
ln
(
n!(r!)−n/r

(
n

d−1

)−1 (n
r

)−d+1
)

lnn!

= 1− lim
(n/r) ln r! + (d− 1) ln(n/r)

lnn!

= 1− lim
n ln r + d lnn− d ln r +O(n)

n lnn+O(n)

= 1− ρ− δ + ρδ,

where we have used the fact that lim
ln ( n

d−1)
lnn! = 0. This

establishes the claimed result for the asymptotic capacity of
multipermutation codes in the Hamming metric.

B. Multipermutation Codes in the Ulam Metric

Using Lemma 3 which implies that A◦(n, r, d) ≤
AH(n, r, d), we find the following upper bound on A◦(n, r, d):

A◦(n, r, d) ≤ AH(n, r, d) ≤ S(n−d+1,
n

r
, r) ≤

(n
r

)n−d+1

.

(12)
The next lemma provides a lower bound on A◦(n, r, d).

Lemma 7. (Gilbert-Varshamov Bound) For positive integers
n, r, d such that n is a multiple of r, we have

A◦(n, r, d) ≥ (n− d+ 1)!(
n

d−1

)
(r!)2n/r

·
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Proof: Let Br
◦(u) denote the size of a ball of radius

u in Sn endowed by dr◦ (note that due to symmetry, i.e.,
left invariance of the Ulam metric, the volume of the ball
is independent on the choice of the center). Equivalently, let
Br◦(u) = | {π ∈ Sn : dr◦(π, e) ≤ u} |. The Gilbert bound states
that

A◦(n, r, d) ≥ n!

Br◦(d− 1)
·

We show that Br◦(d − 1) ≤ (r!)2n/rB1◦(d − 1). The lemma
then follows from a result pertaining to the Ulam metric we
derived in [7], namely:

B1
◦(d− 1) ≤

(
n

d− 1

)
n!

(n− d+ 1)!
·

The set {π ∈ Sn : dr◦(π, e) ≤ u} equals⋃
σ∈Rr(e)

⋃
π∈Sn:d◦(π,σ)≤u

Rr(π).

Hence,

Br
◦(u) =

∣∣∪σ∈Rr(e) ∪π∈Sn:d◦(π,σ)≤u Rr(π)
∣∣

≤ (r!)n/r
∣∣∪π∈Sn:d◦(π,e)≤uRr(π)

∣∣
≤ (r!)n/rB1

◦(u)(r!)
n/r

= (r!)2n/rB1
◦(u),

which shows that Br◦(d− 1) ≤ (r!)2n/rB1◦(d− 1).
Next, we improve upon Lemma 7 by finding a sharper

bound for Br◦(u), u ∈ Z
+. Consider the ball around the

identity permutation e. For a permutation π that satisfies
dr◦(π, e) ≤ u, there exists a π′ ∈ Rr(π) that has a common
subsequence s of length l = n − u with some e′ ∈ Rr(e).
There are

A =
∑

x1 + · · ·+ xn/r = l,
xi ∈ [0, r], ∀i

n/r∏
i=1

(
r

xi

)
xi!

ways of choosing a sequence s of length l such that it is a
subsequence of some e′ ∈ Rr(e), with

∏n/r
i=1

(
r
xi

)
xi! counting

the number of ways one can choose a subsequence of length
l with xi elements from rank i,

ore′(i) = ore(i) = {(i− 1)r + 1, . . . , ir}.
The number of ordered partitions o with parts of size equal

to r, such that there exists a π′ that satisfies o = orπ′ and
contains s as a subsequence equals

B =
∑

x1 + · · ·+ xn/r = l,
xi ∈ [0, r], ∀i

(
n− l

r − x1, . . . , r − xn/r

)
.

Here, the multinomial
(

n−l
r−x1,...,r−xn/r

)
accounts for the num-

ber of ways of choosing the ordered partition o such that the
first x1 elements of s are in the first part, the next x2 elements
are in the second part, and so on.

In addition, there are (r!)n/r permutations π such that π ∈
Rr(π

′). Hence,
Br
◦(u) ≤ AB(r!)n/r . (13)

With regards to bounding the combinatorial sum A, we
observe that

A ≤
(
l + n/r − 1

n/r − 1

)
max

x1 + · · ·+ xn/r = l,
xi ∈ [0, r], ∀i

n/r∏
i=1

(
r

xi

)
xi!

≤
(
l + n/r − 1

n/r − 1

)( r!

(r − l
n/r )!

)n/r
≤
(
2n

n

)( r!
r(n−l)

n !

)n/r
.

Using a similar approach for B, we find

B ≤
(
2n

n

)
(n− l)!(

r(n−l)
n !

)n/r ·
Hence,

Br
◦(u) ≤

(
2n

n

)2( r!
ru
n !

)2n/r
u!,

and so, for d > 1,

lnBr
◦(d− 1) ≤ 2n

r
ln r!− 2n

r
ln

r(d − 1)

n
!

+ ln(d− 1)! +O(n)

= 2n ln r − 2(d− 1) ln
r(d − 1)

n
+ (d− 1) ln(d− 1) + O(n)

= 2n ln r − 2d ln r + 2d lnn− d ln d+O(n).

This implies that

C◦(r, d) ≥ 1− lim
2n ln r − 2d ln r + 2d lnn− d ln d+O(n)

n lnn+O(n)

= 1− 2ρ+ 2δρ− δ

= (1− δ)(1 − 2ρ). (14)

Theorem 8. The capacity of multipermutation codes in the
Ulam metric is bounded according to

(1− δ)(1− 2ρ) ≤ C◦(r, d) ≤ (1− δ)(1 − ρ).

Proof: The lower bound is given in (14) while the upper
bound is a result of (12) and Theorem 6.

IV. CONSTRUCTIONS

In the next subsections, we present several constructions for
multipermutation codes in the Ulam metric. One of the key
ingredients of our constructions is permutation interleaving,
which we proposed for Ulam metric code design in [7]. The
related idea of restricting certain positions in the codewords
to certain values was first described in [11], [12], while
interleaving in the Chebyshev metric was discussed in [18].

For sequences π1, . . . , πk, let π1 ◦r π2 ◦r · · · ◦r πk denote
the sequence obtained by sequentially interleaving blocks of
r elements of πi, i ∈ [k].

For example, (1, 3, 4, 2) ◦2 (6, 7, 8, 5) ◦2 (12, 10, 9, 11) =
(1, 3, 6, 7, 12, 10, 4, 2, 8, 5, 9, 11).

This form of interleaving will henceforth be called block
interleaving. Whenever r = 1, we simply write ◦ instead of
◦1.
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A. Constructions based on almost disjoint sets

Two sets A and B are said to be at most k-intersecting, if
for a given positive integer k, one has

|A ∩B| ≤ k.

When k is smaller than the size of the sets A,B, and the
aforementioned bound is true, we say that the sets are almost
disjoint. The next lemma shows how sets of set partitions with
almost disjoint parts can be used for constructing multipermu-
tation codes in the Ulam metric.

Lemma 9. Let C be an MPC(n, r) code, and suppose that t
is a positive integer such that 2t < r. If for all π, σ ∈ C and
i ∈ [n/r], we either have orπ(i) = orσ(i) or

|orπ(i) ∩ orσ(i)| < r − 2t, (15)

then the code C can correct t translocation errors, that is, C
is an MPC◦(n, r, 2t+ 1) code.

Proof: Suppose π ∈ C is the (unknown) stored codeword
and ω is the retrieved permutation. The Ulam distance between
π and ω is at most t since the codeword π is affected by at
most t translocation errors. We show that given ω, orπ can be
uniquely identified. Fix i ∈ [n/r]. Since there are at most t
translocation errors, by Lemma 2, we have

|orπ(i) ∩ orω(i)| ≥ r − t. (16)

To identify orπ(i) uniquely, it suffices to have |orσ(i) ∩ orω(i)| <
r − t for all σ ∈ C such that orπ(i) �= orσ(i).

Suppose that σ ∈ C and orπ(i) �= orσ(i). We use (15)
and (16) to show that |orσ(i) ∩ orω(i)| < r − t. For simplicity,
let Bπ = orπ(i), Bσ = orσ(i), and Bω = orω(i). We then have

|Bσ ∩Bω| = |Bσ ∩Bω ∩Bc
π|+ |Bσ ∩Bω ∩Bπ|

≤ |Bω ∩Bc
π|+ |Bσ ∩Bπ|

(a)
< (r − |Bω ∩Bπ |) + (r − 2t)

(b)

≤ t+ r − 2t = r − t,

where Bc
π denotes the complement of Bπ. Inequality (a)

follows from the fact that |Bω| = r and (15); and inequality
(b) follows from (16). This completes the proof.
Remark 10. A code satisfying the condition of Lemma 9
can in fact correct a class of errors that is more general
than translocation errors. More precisely, the code can correct
errors that lead to the displacement of at most t elements of
each rank. In particular, the code can correct t transposition
errors, t Hamming errors, or any t errors where each error
displaces at most one element from each rank. As an example
of the latter type of error, consider

({3,4}, {2, 6}, {7, 8}, {1, 5}) error−−−−−→
({3,1}, {2, 6}, {4, 8}, {7, 5}) ,

where each rank corresponds to one set in the set partition.
We note that each part except for the one listed second has
one displaced (moved) element.

A code that satisfies the conditions of Lemma 9 can be
decoded in time O(Mnr), where M is the size of the code. As

before, suppose that π ∈ C is the unknown stored codeword
and ω is the retrieved permutation. For each i ∈ [n/r], we
must identify a unique set A(i) ∈ {orσ(i) : σ ∈ C} such that

|A(i) ∩ orω(i)| ≥ r − t. (17)

The ordered partition representation of π is then orπ =
(A(1), . . . , A(n/r)) .

The intersection of orω(i) and each of the sets in {orσ(i) :
σ ∈ C} can be trivially found with time complexity O(r2).
Since there are M sets in {orσ(i) : σ ∈ C}, finding A(i) for
each i ∈ [n/r] takes O(Mr2) steps. Thus orπ can be identified
with complexity O(Mr2n/r) = O(Mnr).

Since for some code parameters M can be exponential in
n, the time needed for exhaustive search decoding may be
exponential as well. However, if more information about the
structure of the code is available, decoding may be performed
much faster, as in the cases of constructions based on grouping
elements and Steiner systems discussed in Subsections IV-A1
and IV-A2.

We pause to briefly comment on the relationship between
almost disjoint sets of set partitions and intersecting families,
in the context of the celebrated Erdős-Ko-Rado (EKR) theo-
rem (see [34], [35] and references therein). A family of subsets
of a set is said to be intersecting if each pair of subsets have
a non-empty intersection. The EKR theorem establishes upper
bounds on the size of the largest intersecting family. This
theorem is also extended to the space of permutations where
a set of permutations is said to be intersecting if each pair
of permutations agree in some coordinate [36]–[38]. In our
formulation, we require the intersections to be small, unlike
for intersecting families where the intersection size may be
arbitrary large as long as it is non-zero. Furthermore, we
require our subsets to be organized into ordered partitions,
with the intersection property holding only for parts at the
same location. Although the code-anticode theorem by Del-
sarte [39], [40] may help in establishing bounds on families of
subsets intersecting in a few elements only, it cannot be used
for the specialized ordered set partition setting in a simple
manner. To the best of our knowledge, the almost disjoint set
partition family problem has not been previously studied in
the extremal combinatorics literature.

Next, we describe two methods for constructing codes that
satisfy the conditions of Lemma 9.

1) A Construction based on grouping elements: If r is a
multiple of 2t+ 1, the following simple construction satisfies
the conditions of Lemma 9. Partition the set [n] in an arbitrary
fashion into n/(2t+1) parts E1, · · · , En/(2t+1), each of size
2t+ 1. Consider all ordered partitions o of [n] into n/r parts
of size r that place all elements of each Ej , j ∈ [n/(2t+1)],
in the same part. Let C be a code such that its corresponding
set of ordered set partitions Or(C) consists of the set of
aforementioned partitions o.

As an illustration, suppose t = 1, r = 6, and n = 12, and
let {1, . . . , 12} be partitioned as {E1, E2, E3, E4}, with

E1 = {1, 2, 3}, E2 = {4, 5, 6},
E3 = {7, 8, 9}, E4 = {10, 11, 12}.
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Next, consider ordered partitions of {1, . . . , 12} that place all
elements of each Ei in the same part, namely,

o1 =
({1, 2, 3, 4, 5, 6}, {7, 8, 9, 10, 11, 12}) ,

o2 =
({1, 2, 3, 7, 8, 9}, {4, 5, 6, 10, 11, 12}) ,

o3 =
({1, 2, 3, 10, 11, 12}, {4, 5, 6, 7, 8, 9}) ,

o4 =
({4, 5, 6, 7, 8, 9}, {1, 2, 3, 10, 11, 12}) ,

o5 =
({4, 5, 6, 10, 11, 12}, {1, 2, 3, 7, 8, 9}) ,

o6 =
({7, 8, 9, 10, 11, 12}, {1, 2, 3, 4, 5, 6}) .

Then, the code corresponding to the set of ordered partitions
O = {o1, . . . , o6} can correct one translocation error.

To see that C satisfies the conditions of Lemma 9, consider
o, o′ ∈ Or(C) and i ∈ [n/r]. Suppose that o(i) �= o′(i).
There exists Ej such that Ej ⊆ o(i) but Ej ∩o′(i) = ∅. Since
|Ej | = 2t+ 1, we have |o ∩ o′(i)| < r − 2t.

The simplicity of this construction allows for fast decoding.
Without loss of generality, assume that

Ej = {(j − 1)(2t+ 1) + 1, . . . , j(2t+ 1)}.
Suppose that π is the stored codeword and ω is the re-
trieved permutation. For each i ∈ [n/r], we have Ej ⊆
orπ(i) if |Ej ∩ orω(i)| ≥ t + 1. To compute |Ej ∩ orω(i)|,
j ∈ [n/ (2t+ 1)], we compare each element of orω(i) with
j (2t+ 1), j ∈ [n/ (2t+ 1)]. This can be performed in
O
(

rn
2t+1

)
steps. Hence, decoding can be performed in time

O(nr
rn

2t+1 ) = O(n2).
Let d = 2t+ 1. The cardinality of the code C equals

(n/d)!

((r/d)!)n/r
,

and thus the asymptotic rate is

lim
n
d ln n

d − n
d ln r

d +O(n)

n lnn+O(n)
= lim

1

d

lnn− ln r +O(1)

lnn+O(1)

= (1− ρ) lim
1

d
.

Hence, the asymptotic rate is nonzero iff d is bounded (con-
stant). While the rate of the code does not approach capacity,
it should be noted that, per Remark 10, the code can correct
more general errors than translocation errors.

2) Constructions based on combinatorial designs: Several
well-known – and a number of significantly lesser known
– families of combinatorial objects are closely related to
the notion of almost disjoint ordered set partition families.
These include block designs and Latin squares. From the first
category, we use Steiner systems and resolvable balanced in-
complete block designs and, from the latter category, we men-
tion semi-Latin squares, representing a generalization of the
well-known family of Latin squares [41]. The constructions
are straightforward consequences of the definition of almost
disjoint sets, but they provide for a rather limited set of code
parameters. A more general method, based on interleaving
arguments, will be presented in the next subsection.

A Latin square of order n is an n× n array such that each
element of [n] appears exactly once in each row and exactly
once in each column. A semi-Latin square with parameters n
and r is an n

r × n
r , array where each cell is an r-subset of

[n] such that each element in [n] appears exactly once in each
column and exactly once in each row [25]. An example of a
semi-Latin square is shown below, with n = 6, r = 2:

{1,4} {2,5} {3,6}
{3,5} {1,6} {2,4}
{2,6} {3,4} {1,5}

Note that the definition of a semi-Latin square implies that
each row and each column of the square represent a partition
of [n]. Hence, we arrive at the following result.

Lemma 11. The rows of a semi-Latin square with parameters
n and odd r, viewed as ordered set partitions of [n], form the
ordered set partitions of an MPC◦(n, r, r) code of cardinality
n
r .

The result is a direct consequence of Lemma 9 and the fact
that no element is repeated in a column of a semi-Latin square.
Unfortunately, the size of a code based on semi-Latin squares
is small, since the row-column restrictions are too strong for
the purpose of designing almost disjoint ordered set partition
families.

As stated before, a code that satisfies the conditions of
Lemma 9 can be decoded in time O(Mnr). This implies that
the code of Lemma 11 is decodable in time O(n2).

Another family of combinatorial objects that allow for
constructing almost disjoint ordered set partitions are special
types of designs, namely resolvable balanced incomplete block
designs and resolvable Steiner systems.

A k-(n, r, λ)-design is a family of r-subsets of a set X of
size n, each called a block, such that every k-subset of X
appears in exactly λ blocks. Such a design is resolvable if its
blocks can be grouped into m classes, such that each class
forms a partition of X . It is known that [41, p. 202]

m = λ

(
n−1
k−1

)(
r−1
k−1

) ·
A Steiner system St(k, r, n) is a k-(n, r, 1)-design and a

balanced incomplete block design (BIBD) with parameters
(n, r, λ) is a 2-(n, r, λ)-design. For the purpose of code con-
struction, resolvable Steiner systems and Resolvable BIBDs
(RBIBDs) are of special interest.

The following lemma shows that resolvable Steiner systems
can be used to construct multipermutation codes in the Ulam
metric. Resolvable designs may also be used to construct mul-
tipermutation codes in the Hamming metric, as described by
Chu et al. [16]. The aforementioned construction nevertheless
does not cater to the specialized requirements posed by the
Ulam metric.

Lemma 12. If a resolvable Steiner system St(k, r, n) exists,
then there exists an MPC◦(n, r, d), where d is an odd number
satisfying d ≤ r − k + 1, of size(

n−1
k−1

)(
r−1
k−1

) (n
r

)
!.

Proof: We use a Steiner system St(k, r, n) to construct
a family of ordered set partitions satisfying the conditions of
Lemma 9.
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Let m denote the number of classes of the Steiner system.
The blocks of each of the m classes of the Steiner system
form an unordered set partition. Each unordered set partition
gives rise to

(
n
r

)
! ordered set partitions. Hence, in total, we

have m(nr )! ordered set partitions. Let C be a code such that
its corresponding set of ordered set partitions Or(C) is the
aforementioned set of m(nr )! partitions.

Let t = (d− 1)/2. We have k ≤ r− 2t. Each two blocks in
the Steiner system have less than k elements in common, and
consequently, have less than r − 2t elements in common. It
follows that the conditions of Lemma 9 are satisfied. Hence,
C is an MPC◦(n, r, d) of the stated size.

The code described in the preceding lemma can be decoded
in time O(nkr) as follows. Suppose that π is the stored code-
word and ω is the retrieved permutation. For each i ∈ [n/r], to
find orπ(i), one needs to compute the size of the intersection of
orω(i) with the blocks of the Steiner system. Computing each
intersection takes O(r2). Hence, decoding can be performed
in time

O

(
n

r

(
n−1
k−1

)(
r−1
k−1

) r2
)

= O

(
nr

(
n− 1

k − 1

))
= O

(
nkr
)
.

An RBIBD with parameters (n, r, λ = 1) is a resolvable
Steiner system St(2, r, n), and thus can be used for code
construction. For λ = 1, the case of interest in all our
subsequent derivations, the condition

n = r mod r(r − 1)

is necessary for the existence of an RBIBD, and it is also
known to be asymptotically sufficient for r ≥ 5 [23].

Two of the most commonly used approaches to constructing
RBIBDs are based on finite fields [23] and on a simple combi-
natorial construction [24]. Using the former construction, one
can derive RBIBDs with parameters λ = 1, n = pαv , and
r = pα, with p a prime and α and v positive integers.

The combinatorial construction of [24] is based on the
following straightforward procedure. Assume that r is prime
and arrange the n = r2 elements of the n-set into an r × r
array in order. Each row corresponds to one block of size r,
and each array represents a class that partitions the n-set. The
first class, denoted by C1, is shown below for r = 3:

1 2 3
4 5 6
7 8 9

Class C2 is constructed from class C1 by taking the
transpose. Each subsequent class Ci, for i ≥ 3, is constructed
from the previous class Ci−1 in the following manner: the
cyclically continued diagonals of Ci−1 are arranged row-wise,
starting from the main diagonal, and then moving to the left
sub-diagonals. For the example with r = 3, the additional
three classes constructed according to the above procedure
take the form:

1 4 7
2 5 8
3 6 9

1 5 9
2 6 7
3 4 8

1 6 8
2 4 9
3 5 7

Note that the procedure terminates after r+1 steps, resulting
in a repetition of class C2. The total number of blocks in the
RBIBD equals r(r + 1) = r2 + r.

The construction involving cyclic diagonal shifts can be
extended for resolvable, unbalanced IBDs with parameters
n = pαr, α ≥ 1, p prime, and block size r which may
be an arbitrary integer ≥ 2. The only difference between a
balanced and unbalanced design is the requirement that any
pair of elements appear in at most λ blocks [24]. For the case
λ = 1, i.e., any pair of elements appearing zero or one time,
the designs are known as zero-one concurrence designs; they
may be constructed by a combination of variety cutting and
the diagonalization procedure described above. The interested
reader is referred to [24] for an in-depth treatment of this
construction.

The aforementioned procedures show that an RBIBD with
parameters (r2, r, 1) exists, provided that r is an odd prime.
Hence, using Lemma 12, we can obtain the following lemma,
which concludes this subsection.

Lemma 13. Suppose that r is an odd prime. Then,
A◦(r2, r, r − 2) ≥ (r + 1)r!.

B. Construction based on codes with r components

In this subsection, we present a construction for multiper-
mutation codes in the Ulam metric based on r permutation
codes of length n/r, interleaved to ensure translocation error
protection.

Assume that d ≤ n/r. Consider a partition {P1, . . . , Pr} of
[n] into sets of equal size, and the set of codes {C1, . . . , Cr},
with each Ci, i ∈ [r], being a permutation code of minimum
Ulam distance d over Pi. We form a new code C as follows:

C =
⋃

ci∈Ci, ∀ i

Rr(c1 ◦ · · · ◦ cr). (18)

Proposition 14. The code C given in (18) is an MPC◦(n, r, d)
code.

Proof: Consider π′, σ′ ∈ C such that π′ �≡r σ′. By
construction, there exists π ∈ Rr(π

′) and σ ∈ Rr(σ
′) such

that σ = σ1 ◦ · · · ◦ σr, σi ∈ Ci,

π = π1 ◦ · · · ◦ πr , πi ∈ Ci. (19)

Since π �≡r σ, there exists an element j ∈ [r] such that πj �=
σj .

We show that for an arbitrary choice of α ∈ Rr(π) and
β ∈ Rr(σ), we have d◦(α, β) ≥ d. Since α and β are chosen
arbitrarily, we find that

dr◦(π
′, σ′) = dr◦(π, σ) = min

α∈Rr(π)
min

β∈Rr(σ)
d◦(α, β) ≥ d,

which completes the proof.
For α ∈ Rr(π) and β ∈ Rr(σ) and each i ∈ [r], the order of

the elements of Pi is the same in π and in α, i.e., πPi = αPi .
Furthermore, since πi ∈ Ci, and Ci is a code over Pi, we
have πi = πPi . Hence, αPi = πi. A similar argument holds
for σ and β, implying that βPi = σi for each i ∈ [r]. So, by
Lemma 1, one can show that

d◦(α, β) ≥
r∑

i=1

d◦ (αPi , βPi) =
r∑

i=1

d◦ (πi, σi)

≥ d◦ (πj , σj) ≥ d,

where the last inequality follows from πj �= σj .
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As an example, for n = 6, r = 2, and d = 2, consider

P1 = {1, 2, 3} ,
P2 = {4, 5, 6} ,
C1 = {(1, 2, 3) , (3, 2, 1))} ,
C2 = {(4, 5, 6) , (6, 5, 4)} .

Note that C1 and C2 both have Ulam distance equal to 2. The
code C, constructed according to (18) contains

(1, 4, 2, 5, 3, 6) , (1, 6, 2, 5, 3, 4) ,
(3, 4, 2, 5, 1, 6) , (3, 6, 2, 5, 1, 4) ,

and their equivalence classes under ≡2. For instance, let π =
(1, 4, 2, 5, 3, 6) and σ = (3, 4, 2, 5, 1, 6) and consider α =
(4, 1, 5, 2, 3, 6) ∈ R2 (π) and β = (4, 3, 5, 2, 6, 1) ∈ R2 (σ). It
can be observed that αP1 = πP1 = (1, 2, 3) and αP2 = πP2 =
(4, 5, 6). Similar statements hold for β and σ. It can also be
verified that

d◦ (α, β) = 2.

For several constructions of permutation codes in the Ulam
metric, we refer the reader to [7].

The components of the constructed code can be decoded
independently. As before, suppose that π is the stored code-
word and ω is the retrieved permutation. Since there are at
most t =

⌊
d−1
2

⌋
errors, we have d◦(π, ω) ≤ t. By Lemma 1,

this implies that d◦(πP , ωP ) ≤ t for all P ∈ {P1, . . . , Pr}.
Hence, one can use a decoder for permutation codes in the
Ulam metric that can correct t errors. Consequently, orπ can
be identified from ωP , P ∈ {P1, . . . , Pr}, through a parallel
decoding process. Note that a simple decoding architecture
for a class of codes in the Ulam metric was proposed in our
companion paper [7], based on Hamming distance decoding
of de-interleaved component codes.

Assuming that the cardinality of the codes Ci equals
A◦(n/r, 1, d), the cardinality of C equals A◦(n/r, 1, d)r.
Recall that we define the cardinality of a multipermutation
code as the number of its equivalence classes and not the
number of its elements. It was proved in [7] that

A◦(m, 1, d) ≥ (m− d+ 1)!(
m

d−1

) ·

Hence,

A◦(n, r, d) ≥
(
(n/r − d+ 1)!(

n/r
d−1

)
)r

.

Furthermore, from the fact that C◦(1, d) = 1− δ [7], we find
that

C◦(r, d) = lim
lnA◦(n, r, d)

lnn!

≥ lim
r lnA◦(n/r, 1, d)

lnn!

= lim
lnA◦(n/r, 1, d)

ln(n/r)!
lim

r ln(n/r)!

lnn!

= (1− lim
rd

n
)(1 − ρ).

In particular, if lim rd
n = 0, then C◦(r, d) = (1 − ρ).

C. Construction based on codes in the Hamming metric

Recall that drH(π, σ) ≥ dr◦(π, σ). Thus, if C is an
MPC◦(n, r, d) code, then it is also an MPCH(n, r, d) code. We
now show that an MPC◦(n, r, d) code can be obtained using
multipermutation Hamming codes of shorter lengths. We refer
the reader to [13]–[16] for constructions of multipermutation
codes in the Hamming metric.

Proposition 15. Suppose that n/r is even and that d ≤ r.
Let P =

[
n
2

]
, and Q = [n]\P . Additionally, let C′

1 be an
MPC◦(n2 , r, d) code over P and C1 be an MPCH(n2 , r, d)
code over Q. The code C = C′

1 ◦r C1 is an MPC◦(n, r, d)
code.

Proof: Let π, σ ∈ C with π �≡r σ. Assume that

π = π′
1 ◦r π1, σ = σ′

1 ◦r σ1,

where π′
1, σ

′
1 ∈ C′

1 and π1, σ1 ∈ C1.
First, suppose that π′

1 �≡r σ′
1. Then,

dr◦(π, σ) = min
α∈Rr(π)

min
β∈Rr(σ)

d◦(α, β)

≥ min
α∈Rr(π)

min
β∈Rr(σ)

d◦(αP , βP )

≥ d,

where the first inequality follows from Lemma 1, and the sec-
ond inequality follows from the facts that αP ∈ Rr(π

′
1) ⊆ C′

1,
βP ∈ Rr(σ

′
1) ⊆ C′

1, and that C′
1 is an MPC◦(n/2, r, d) code.

Next, suppose that π′
1 ≡r σ

′
1. Since π �≡r σ, we have π1 �≡r

σ1. Let

D =
{
x ∈ Q : x ∈ orπ1

(i), x ∈ orσ1
(j), i �= j

}
be the set of elements of Q that are of different ranks in π1

and σ1. Note that |D| = drH(π1, σ1).
Consider α ∈ Rr(π) and β ∈ Rr(σ). For odd values of i,

we have orα(i) = orβ(i), as π′
1 ≡r σ

′
1.

On the one hand, for any common subsequence of α and β
that contains an element of D, there exists some odd i such
that orα(i) = orβ(i) is not in that subsequence. This implies
that the length of the given common subsequence is at most
n− r. On the other hand, for any common subsequence of α
and β that does not contain any element of D, the length of
that subsequence is at most

n− |D| = n− drH(π1, σ1) ≤ n− d.

Hence, the length of any common subsequence of α and β is
at most

max{n− d, n− r} = n− d

and thus d◦(α, β) ≥ d. Since α and β are arbitrary elements
of Rr(π) and Rr(σ), respectively, we find that dr◦(π, σ) ≥ d,
which completes the proof.

One particularly simple choice for C′
1 is

C′
1 = Rr ((1, . . . , n/2)) , (20)

which is a code with cardinality 1.
As an example, let n = 8, r = 2, d = 4, and

C′
1 = R2 ((1, 2, 3, 4))

= {(1, 2, 3, 4) , (2, 1, 3, 4) , (1, 2, 4, 3) , (2, 1, 4, 3)} ,
C1 = R2 ((5, 6, 7, 8)) ∪ R2 ((7, 8, 5, 6)) ,
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which leads to

C = R2 ((1, 2, 5, 6, 3, 4, 7, 8)) ∪ R2 ((1, 2, 7, 8, 3, 4, 5, 6)) ,

an MPC◦ (8, 2, 4) code.
For the case of (20), the cardinality of C equals the

cardinality of C1, which may be as large as AH(n/2, r, d).
Hence,

A◦(n, r, d) ≥ AH(n/2, r, d)

if n/r is even and d ≤ r. With similar arguments, one can
show that, if n/r is odd and d ≤ r, then

A◦(n, r, d) ≥ AH ((n+ r)/2, r, d) .

For d ≤ r and ρ < 1, we have δ = 0. Hence, for d ≤ r and
ρ < 1,

C◦(r, d) ≥ 1

2
(1− ρ)(1 − 2δ) =

1

2
(1− ρ).

To construct larger codebooks, one may recursively use the
construction of Prop. 15 to design C′

1. For simplicity, suppose
that n and r are both powers of 2. Let

C = ((C′
k ◦r Ck) ◦r Ck−1 ◦r · · · ) ◦r C1,

where each Ci, i ∈ [k], is an MPCH

(
n/2i, r, d

)
code, C′

k =
Rr

(
(1, . . . , n/2k)

)
, and k is a positive integer satisfying k ≤

lg(n/r). The condition k ≤ lg(n/r) is required since we need
n/2k ≥ r. Note that this condition also implies that n/2k ≥
d, since d ≤ r. The code C is an MPC◦(n, r, d) code. The
cardinality of Ci can be as large as AH

(
n/2i, r, d

)
. Hence,

if n and r are powers of 2 and d ≤ r, it holds that

A◦(n, r, d) ≥
k∏

i=1

AH

(
n/2i, r, d

)
.

Let n = 2j , r = 2ρj , d ≤ r, where ρ is a constant less than
1, and suppose that k is a constant such that k ≤ lg(n/r) =
j(1− ρ). For this regime, we have

lim
j→∞

lnA◦(2j, 2ρj , d)
lnn!

≥ lim
j→∞

lgA◦(2j , 2ρj , 2ρj)
lg 2j!

≥
k∑

i=1

lim
j→∞

lgAH(2j−i, 2ρj , 2ρj)

lg 2j−i!

lg 2j−i!

lg 2j !

=

k∑
i=1

(
1− lim

j→∞
ρj

j − i

)
2−i

=(1− ρ)(1− 2−k).

Since ρ < 1, k can be chosen arbitrarily large. Hence, the
asymptotic rate can be made arbitrary close to (1− ρ).

V. CONCLUSION

We studied a novel rank modulation scheme based on mul-
tipermutation codes in the Ulam metric. We also highlighted
the close connection between multipermutation codes in the
Hamming metric, also known as constant composition codes
and frequency permutation arrays, and codes in the Ulam
metric.

The presented results included bounds on the size of multi-
permutation codes in both the Ulam metric and the Hamming
metric; for the case of the Hamming metric, these bounds

led to the capacity of the codes, while for the Ulam metric,
the bounds led to upper bounds and lower bounds for the
capacity, with a gap equal to ρ(1 − δ). We also presented
several construction methods for codes in the Ulam metric
using permutation interleaving, semi-Latin squares, resolvable
Steiner systems, and resolvable balanced incomplete block
designs, among other techniques.
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