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Abstract—We consider rank modulation codes for flash memo-
ries that allow for handling arbitrary charge-drop errors. Unlike
classical rank modulation codes used for correcting errors that
manifest themselves as swaps of two adjacently ranked elements,
the proposed translocation rank codes account for more general
forms of errors that arise in storage systems. Translocations
represent a natural extension of the notion of adjacent transpo-
sitions and as such may be analyzed using related concepts in
combinatorics and rank modulation coding. Our results include
derivation of the asymptotic capacity of translocation rank codes,
construction techniques for asymptotically good codes, as well as
simple decoding methods for one class of constructed codes. As
part of our exposition, we also highlight the close connections be-
tween the new code family and permutations with short common
subsequences, deletion and insertion error-correcting codes for
permutations, and permutation codes in the Hamming distance.

Index Terms—Data storage systems, error-correction codes,
flash memory, Hamming distance, translocation errors, Ulam
distance.

I. INTRODUCTION

P ERMUTATION codes and permutation arrays are collec-
tions of suitably chosen codewords from the symmetric

group, used in applications as varied as single user commu-
nication over Gaussian channels [1], [2], reduction of impul-
sive noise over power lines [3], [4], and coding for storage [5].
Many instances of permutation-based codes were studied in the
coding theory literature, with special emphasis on permutation
arrays under the Hamming distance and rank modulation codes
under the Kendall distance [6]–[9, Ch. 6B]. The distances used
for code construction in storage devices have mostly focused
around two types of combinatorial measures, counting functions
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of adjacent transpositions and measures obtained via embed-
dings into the Hamming space [3], [5]. This is due to the fact that
such distance measures capture the displacement of symbols in
retrieved messages that arise in modern nonvolatile storage sys-
tems.
One of the most prominent emerging applications of permu-

tation codes in storage is rank modulation. Rank modulation is
an encoding scheme for flash memories that may improve the
lifespan, storage efficiency, and reliability of future generations
of these storage devices [10]–[12]. The idea behind the modula-
tion scheme is that information should be stored in the form of
rankings of the cells’ charges, rather than in terms of the abso-
lute values of the charges. This simple conceptual coding frame-
work may eliminate the problem of cell block erasures as well
as potential cell overinjection issues [10], [13]. In their orig-
inal formulation, rank-modulation codes represent a family of
codes capable of handling errors of the form of adjacent trans-
positions. Such transposition errors represent the most likely er-
rors in a system where the cells are expected to have nearly uni-
form leakage rates. But leakage rates depend on the charge of
the cells, the position of the cells, and on a number of external
factors, the influence of which may not be adequately captured
by adjacent transposition errors. For example, if a cell for a va-
riety of reasons has a higher leakage rate than other cells, given
sufficient time, the charge of this cell may drop below the charge
of a large number of other cells. Furthermore, if the number of
possible charge levels is large,1 and thus the difference between
charge levels is small, a moderate charge drop may result in
a significant drop in the cell’s rank. One may argue that these
processes may be modeled as a sequence of adjacent transpo-
sition errors. However, as this type of error is the result of a
single-error event, for the purpose of error correction, it should
be modeled as a single error. This is reminiscent of the scenario
where one models a sequence of individual symbol errors as a
single burst error [15].
In what follows, we present a novel approach to rank mod-

ulation coding which allows for correcting a more varied class
of errors when compared to classical schemes. The focal point
of the study is the notion of a translocation, a concept that
generalizes an adjacent transposition in a permutation. Roughly
speaking, a translocation2 moves the ranking of one particular
element in the permutation below the rankings of a certain
number of closest-ranked elements. As such, translocations are

1There are two important motivations for increasing the number of charge
levels. First, larger number of charge levels may enable storing more data, and
second, when there are a large number of charge levels available, encoding
methods such as push-to-the-top [14] can be used to decrease the number of
times that the memory needs to be erased.
2Note that our definition of the term translocation differs from the definition

commonly used in biology. See, e.g., [16].
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suitable for modeling errors that arise in flash memory systems,
where high leakage levels for subsets of cells are expected or
possible. Examples of such error events include errors due to
radiation and breakdown of tunneling oxide, the latter being a
prominent event in conventional poly-Si floating gate memories
[17], [18].
A translocation may be viewed as an extension of an adjacent

transposition. In addition, translocations correspond to pairs of
deletions and insertions of elements in the permutation. As a
consequence, the study of translocations is closely related to the
longest common subsequence problem and permutation coding
under the Levenshtein and Hamming metrics [19]–[21].
Rank modulation is by now well understood from the per-

spective of code construction. The capacity of rank modulation
codes was derived in [5], [22], and [23], while some practical
code constructions were proposed in [5], and [10], and further
generalized in [14], [22], and [24]. Here, we complement the
described work in terms of deriving upper and lower bounds on
the capacity of translocation rank codes, and in terms of pre-
senting constructive, asymptotically good coding schemes. Our
constructions are based on a novel application of permutation
interleaving and are of independent interest in combinatorics
and algebra. For the use of specialized forms of permutation in-
terleaving in other areas of coding theory, the interested reader
is referred to [11] and [25]. Furthermore, we propose decoding
algorithms for translocation codes based on decoders for codes
in the Hamming metric [26], [27]. Finally, we also highlight the
close relationships between permutation codes under a number
of metrics.
This paper is organized as follows. In Section II, we provide

the motivation for studying translocations as well as basic
definitions used in our analysis. The properties of permutations
under translocations are studied in the same section, while
bounds on the size of the codes are presented in Section III.
Code constructions are presented in Sections IV and V, while
concluding remarks are given in Section VI.

II. BASIC DEFINITIONS

Throughout this paper, we use the following notation and ter-
minology. The symbol denotes the set . A per-
mutation denotes a bijection , that is, for any
distinct , we have . We let stand for
the set of all permutations of , i.e., the symmetric group of
order . For any , we write ,
where is the image of under . The identity permu-
tation is denoted by , while stands for the
inverse of the permutation . The product of two permuta-
tions is defined so that, for each , we have

, i.e., permutations act on the left.
For some and , the projection of onto
is obtained from by only keeping elements of and re-

moving all other elements. For example, for
and , we have . Note that has
length . Next, let stand for the set of all permutations
of elements of . The identity element of is , obtained
from by removing elements that are not in .

Permutations are denoted by Greek lowercase letters, while
integers and integer vectors are denoted by Latin lowercase
symbols.
A transposition , for distinct , is a permutation

obtained from the identity by swapping the positions of and .
Namely

If , then is called an adjacent transposition.
For distinct , a translocation is a permutation

obtained from the identity by moving to the position of and
shifting elements between and , including , by one. If ,
we have

and if , we have

For , the permutation is called a right-transloca-
tion and the permutation is called a left-translocation.
The length of a translocation equals , that is, the
number of elements between and , including . Note that a
translocation of length can be modeled by adjacent transpo-
sitions.
If the set of elements under consideration is a subset of ,

for distinct , a translocation over is obtained
from by moving to the position of , and shifting elements
between and , including , by one. Right- and left-transloca-
tions over are defined similarly.
Example 1: Let . We have

Furthermore, let and .
The translocation over equals and we have

. Notice that in this case, as for the case
of standard permutations, the parameters in refer to the
elements in the corresponding identity permutation, rather than
positions.
Observe that the inverse of the left-translocation is the

right-translocation , and vice versa.
Our interest in translocations in permutations is motivated by

rank modulation coding, as illustrated by the examples depicted
in Figs. 1 and 2. In classical multilevel flash memories, each cell
used for storing information is subjected to errors. As a result,
classical error control schemes of nonzero rate cannot be effi-
ciently used in such systems. One solution to the problem is to
encode information in terms of rankings [6], rather than abso-
lute values of the information sequences. Consequently, data are
represented by permutations and errors manifest themselves via
reordering of the ranked elements. The simplest model assumes
that only adjacently ranked elements may be exchanged.
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Fig. 1. Rank modulation codes and adjacent transposition errors.

Fig. 2. Rankmodulation codes and translocation errors caused by “large” drops
of charge levels.

This model has the drawback that it does not account for
more general changes in ranks. With respect to this observation,
consider the charge-drop model in Fig. 2. Here, cell number 3,
ranked second, experienced a leakage rate sufficiently high to
move the cell’s ranking to the eighth position. This error is rep-
resented by the translocation . The translocation
corresponds to six adjacent transpositions. Nevertheless, as al-
ready argued, a translocation should be counted as a single error,
and not a sequence of adjacent transposition errors.
The translocation error model may appear to be too broad

to describe the phenomena arising in flash memories, as errors
corresponding to translocations of small length arise more
frequently than errors corresponding to translocations of long
length. The idea of bounded length translocations (bounded
burst errors) will be addressed in a companion paper.3 We also
remark that translocation errors of arbitrary length accurately
model any error that affects a single cell, and are hence suitable
for modeling arbitrary charge drops of cells independently of
drops of other cells, as well as read disturb and write disturb
errors [28]. This makes them a good candidate for studying
new error-control schemes in flash memories.
Next, we formalize the notion of a distance capturing translo-

cation errors.
Definition 2: Let . The distance between
and is defined as the minimum number of translocations

needed to transform into , i.e., equals the smallest
number such that there exists a sequence of translocations

for which .
Observe that is nonnegative and symmetric. It also

satisfies the triangle inequality, namely, for any and in
, one has

Therefore, it is indeed a distance metric over the space .

3Note that a bounded length translocation in a permutation is closely related
to a bounded -metric error in , studied in [25].

For , the distance is closely related to the
length of the longest common subsequence of and , denoted
by . In fact, as shown in Proposition 3, equals
the Ulam distance [29] between and , where the Ulam dis-
tance is defined as . Although the Ulam distance has
received some attention in the computer science community, to
the best of the authors’ knowledge, codes in the Ulam distance
were not reported in the literature, with the notable exception
of the single-error-correction method by Levenshtein [21] and
the asymptotically zero-rate codes presented in [30] by Beame
et al.
We start our subsequent discussion with the definition of the

notion of invariance. A metric over is right-invariant if,
for all , we have . Similarly,
is left-invariant if . Intuitively, a right-in-
variant metric is invariant with respect to reordering of elements
and a left-invariant metric is invariant with respect to relabeling
of elements.
The distance is a left-invariant metric. To prove this

simple observation, consider three arbitrary permutations
with . Then, there exists a sequence
of translocations such that .

Multiplying both sides of the previous equality by on
the left yields . This implies that

. Conversely, we may repeat the
same argument using and instead of , and
, to obtain . This proves the desired
invariance property.
The length of the longest common subsequence of two

permutations is also left-invariant. To prove this claim, let us
consider again three arbitrary permutations with

. Then, there exists a longest common subse-
quence of and . Here, as anywhere else in
this paper, we assume that one may choose, according to some
arbitrary but fixed rule, one longest common subsequence if
the longest common sequence is not unique. It follows that

is a subsequence of both and ,
and thus, . On the other hand, by consid-
ering the permutations , and instead of , and
, it can also be shown that . This proves
that is left-invariant.
We next show that the translocation distance equals

the Ulam distance. More details about the Ulam distance and the
longest common subsequence of permutations may be found in
[9] and [31].
Proposition 3: For , the distance equals

, i.e., the distance used for assessing the effect of
translocations on permutation codes equals the Ulam distance
between and .

Proof: By the left-invariance of and , we may assume
that one of the permutations is the identity permutation since
otherwise, instead of , we can show
that . It thus suffices to prove that

, where is the length of the
longest increasing subsequence of .
Let denote the set of elements in the longest increasing

subsequence of the permutation . Clearly, it is possible to trans-
form into with at most translocations. This can be
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achieved by applying translocations that eachmove one element
from the set to its position in the identity permutation .
Hence, .
Next, we show that . We start with

and transform it into by applying a sequence of transloca-
tions. Every translocation increases the length of the longest
increasing subsequence by at most one. Hence, we need at
least translocations to transform into , and thus,

.
Henceforth, we shall refer to as the Ulam distance. The

Ulam distance and other notions introduced in this section easily
extend to permutations over a set .
Note that a translocation may correspond to either a left- or

a right-translocation. As seen from the example in Fig. 2, right-
translocations correspond to general cell leakagemodels. On the
other hand, left-translocations assume that the charge of a cell
is increased above the level of other cells. We, therefore, also
introduce the notion of the right-translocation distance. As will
be seen from our subsequent discussion, the Ulam distance is
much easier to analyze than the right-translocation distance and
represents a natural lower bound for this distance.
The Ulam distance is closely related to Levenshtein’s inser-

tion/deletion distance, defined as the number of deletions and
insertions required to transform one sequence into another, and
denoted by . Levenshtein [21] showed that, for sequences
of length , . This equality also holds
for permutations and thus

for . This result may be also deduced directly, by ob-
serving that a translocation consists of a deletion and an inser-
tion.
It is also of interest to see how the Ulam distance compares

to the Kendall distance used in classical rank modulation
coding. The Kendall distance between
and is defined as the minimum number of adjacent
transpositions required to change into . A distance measure
related to the Kendall is the transposition distance, also
known as the Cayley distance. The transposition distance be-
tween two permutations and of is denoted by ,
and equals the smallest number of (not necessarily adjacent)
transpositions needed to transform into . The transposition
distance , as shown by Cayley [32], equals minus
the number of cycles in the permutation .
Since a translocation of length can be represented as ad-

jacent transpositions, and since an adjacent transposition is a
translocation, it is easy to see that

Both the upper bound and the lower bound are tight: the upper
bound is achieved for obtained from via a single adjacent
transposition, while the lower bound is achieved for, say,
and . It is also straightforward to show that
the diameter of with respect to the Ulam distance equals

. Observe that the above inequalities imply that the Ulam
distance is not within a constant factor from the Kendall dis-
tance, so that code constructions and bounds specifically derived

for the latter distance measure are not tight and sufficiently ef-
ficient with respect to the Ulam distance.
A similar pair of bounds may be shown to hold for the Ulam

distance and the Hamming distance between two permutations.
The Hamming distance between permutations and , denoted
by , is defined as the number of positions for which

and differ.
Let . The subsequence

of consisting of elements , is also a sub-
sequence of , and thus,

. Furthermore, since for any two per-
mutations one has , it follows that

. Thus

(1)

These inequalities are sharp. For the upper bound, consider
and , with odd. For the lower-

bound, let and so that
and .

Next, we consider the transposition distance. Note that
each transposition may be viewed as two translocations, im-
plying that . It is also immediate that

. Hence, we have

The relationship between the Hamming distance and the
transposition distance can be explained as follows. When
transforming into using transpositions, each transposition
decreases the Hamming distance between the two permutations
by at most two. Hence, . Sorting a
permutation of length requires at most transpositions. Thus,

. These inequalities result in

(2)

If , then .
There exist many embedding methods for permutations, al-

lowing one set of permutations with desirable properties ac-
cording to a given distance to be mapped into another set of
permutations with good properties in another metric space. In
subsequent sections, we exhibit a method for interleaving per-
mutations with good Hamming distance so as to obtain permu-
tations with large minimum Ulam distance.

A. Right-Translocation Distance

We describe next how to specialize the Ulam distance for the
case that only right-translocations are allowed as error events.
Definition 4: Let and denote by the min-

imum number of right-translocations required to transform
into . For two permutations , the right-transloca-
tion distance is defined as

We demonstrate next that is in fact a metric by proving
that it satisfies the triangle inequality; the other metric properties
may be readily verified using the definition of the distance.
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Consider three permutations, , , and , and let

Suppose that , are right-translo-
cations and that , are left-
translocations such that

(3)

Similarly, suppose that , are
right-translocations and that ,
are left-translocations such that

(4)

Note that the existence of the sets of translocations
follows from the definition of .

From (3) and (4), we have

(5)

Right-translocations and left-translocations have the following
simple property. Suppose is a left-translocation and is a
right-translocation.We can then find a right-translocation and
a left-translocation such that , where either or
are allowed to be the identity permutation. Hence, (5) may

be rewritten as

(6)

Next, let . Note that is not
required to be the minimizer of .
From (6) and the fact that and are right-transloca-

tions and and are left-translocations, it follows that

and thus

Hence, satisfies the triangle inequality.
The definition of implies that for two permutations

, one has if and only if there
exists a permutation such that and

. Hence, a code is -right-translocation cor-
recting if and only if for all ,

. This means that under the given distance constraint, it

is not possible to confuse the actual codeword with another
(wrong) codeword .
Observe that the following bound holds:

It is straightforward to characterize the minimum number of
right-translocations needed to transform one permutation into
another, as we show next.
Definition 5: For , let

Note that is left-invariant since, for ,

where for the first equality, we have used the fact that
and , and the second equality can

be obtained by letting and . Further-
more, using similar arguments as for the proof of left-invariance
of , it can be shown that is left-invariant.
Lemma 6: Let . Then

Proof: It suffices to show that

where

Let be obtained from by applying a right-translocation
that moves some element to the right. Every element of

is also in as each element of
is involved in at least one inversion which is not affected by
moving . Hence, with equality if

. Repeating the same argument yields
.

Conversely, to transform into , it suffices to apply to each
the shortest right-translocation that moves this element to

the smallest position such that to the left of position are all
the elements smaller than . Hence, .
For permutations , the difference between

and may be as large as . This may be seen by
letting and , and observing that

and . Furthermore, it can be
shown that this is the largest possible gap. To prove this fact,
first note that if and only if and
thus to obtain a positive gap one must have .
We also have . Hence,

, which implies that the gap is
at most .
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In the sections to follow, we mainly focus our attention on the
Ulam distance.

III. BOUNDS ON THE SIZE OF CODES

A. Codes in the Ulam Metric

Henceforth, a permutation code, or simply a code, of length
and minimum distance in a metric refers to a subset

of such that for all distinct , we have
. The term a capacity achieving code is reserved for a code
with maximum rate and a given minimum distance in a given
metric space. We also let be the maximum size of a
permutation code of length and minimum Ulam distance .
Proposition 7: For all integers and with , we

have

Proof: Let be the number of permutations at Ulam
distance at most from a given permutation. From left-invari-
ance, we have . The permutations
that are within Ulam distance from are precisely the permu-
tations with . There are ways to choose
the first elements of the longest common subsequence of
and and at most ways to arrange the remaining ele-
ments of . Hence

From the Gilbert–Varshamov bound, we have
and thus

which completes the proof.
Proposition 8: For all , with :

Proof: We provide two proofs for this bound. The first
proof is based on a projection argument first described in [23],
while the second proof is based on a standard counting argu-
ment.
1) Let be a code of length , size , and minimum
distance . Let be the smallest integer such that

for all distinct . Hence,
. By definition, there exist such

that . So, and thus
. Hence,

2) Again, let be a code of length , size , and minimum
distance . Since theminimum distance is , all
subsequences of length of the codewords of are
unique. There are possible subsequences of length

. Hence

which implies that

From the two previous propositions, we obtain

(7)

In the remainder of this paper, all limits are evaluated for
, unless stated otherwise. Furthermore, we assume that

the limits exist.
Lemma 9: The following results hold:
1)

2)

3)

Proof: All claims follow easily from the asymptotic for-
mula .
Let denote the asymptotic capacity of translocation

codes with minimum Ulam distance , i.e.,
.

Theorem 10: .
Proof: From (7), we have

(8)

Taking the limit of (8) and using Lemma 9 proves the theorem.

At this point, it is worth observing that the problem of
bounding the longest common subsequence in permutations
has been recently studied in a combinatorial framework [30].
There, the question of interest was to determine the minimum
length of the longest common subsequence between any two
distinct permutations from a set of permutations of length .
When translated into the terminology of translocation codes,
the problem reduces to finding , the largest possible
minimum Ulam distance of a set of permutations of .
The bounds derived in [30] are constructive, but they hold

only in the zero-capacity domain of the code parameters. Amore
detailed description of one of the constructions of [30] is pre-
sented in Section IV. The bounds of [30] imply that

for . Hence, for
:

Furthermore, for , . For
, this bound is of no practical use.

For , one has
which implies that
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for . Similar bounds can be obtained for
by assuming that for some integer

. Note that although these results hold for the zero-ca-
pacity regime, they still may be useful for finite code length
analysis.
Remark: Similar bounds may be derived for the asym-

metric regime of translocation error-correcting codes.
For this purpose, let and

. Then

where denotes the maximum size of a permutation code
with minimum right-translocation distance .

B. Permutation Codes in Other Metrics

Translocation errors, and consequently, translocation error-
correcting codes, are difficult to analyze directly. On the other
hand, as already pointed out, the Ulam distance is related to var-
ious other metrics well studied in the coding theory and mathe-
matics literature. Since the constructions in subsequent sections
rely on codes for other distance metrics on permutations, we
provide a brief overview of the state-of-the-art results pertaining
to the Hamming, transposition, and Kendall metrics. We also
supplement the known findings with a number of new compar-
ative results for the metrics under consideration.
1) Hamming Metric: Codes in the Hamming metric have a

long history, dating back to the work [1]. The Hamming metric
is a suitable distance measure for use in power-line communi-
cation systems, database management, and other applications.
Let denote the largest number of permutations of

length and minimum Hamming distance . Frankl and Deza
[33, Th. 4] and Deza and Vanstone [34] showed that

where is the volume of the sphere of radius in the
space of permutations with Hamming metric. Improvements of
these results for some special cases were also obtained via linear
programing methods; see, for example, [35].
Let denote the number of derangements of objects, i.e.,

the number of permutations of at Hamming distance from
the identity permutation. It can be shown that

. Hence

where the first inequality follows from the fact that .
Note that although a more precise asymptotic characterization
for the number of derangements is known, namely

the simple bound is sufficiently tight for the capacity
computation.
The aforementioned results lead to

Let denote the capacity of permutation codes under
the Hamming distance , i.e., . Lemma
9 implies the following theorem.
Theorem 11: .
2) Transposition Metric: Let denote the maximum

size of a code with minimum transposition distance at least
. From (2), we have

Using the aforementioned bounds, we have the following the-
orem regarding the capacity of permutation codes of min-
imum distance in the transposition metric.
Theorem 12: The capacity of permutation codes of minimum

distance in the transposition metric is bounded as

3) Kendall Metric: Let denote the largest
cardinality of a permutation code of length with minimum
Kendall distance , and let . Barg and
Mazumdar [23, Th. 3.1] showed that

Note that for the Kendall , the maximum distance between two
permutations may be as large as . On the other hand, the
diameter of with respect to the Ulam distance is .
4) Levenshtein Metric: The bounds on the size of dele-

tion/insertion correcting codes in the more general case of
codes with distinct symbols were first derived by Levenshtein
in his landmark paper [21]. The lower bound relies on the use
of Steiner triple systems and designs [21]. More precisely, let

be the largest cardinality of a set of -subsets of the set
with the property that every -subset

of is a subset of at most one of the -subsets.
Then, the following results holds for the cardinality
of the largest single-deletion correcting codes consisting of
codewords in with distinct symbols [21]:

IV. SINGLE-ERROR-CORRECTING CODES FOR
TRANSLOCATIONS AND RIGHT-TRANSLOCATIONS

This section contains constructions for single-translocation
error detecting and single-translocation error-correcting codes.
For the latter case, we exhibit two constructions: one for translo-
cations and another for right-translocations.

A. Detecting a Single Translocation Error

We start by describing a code that can detect a single translo-
cation error. From the discussion in Section II, recall that the
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Ulam distance is half of the Levenshtein distance, and thus,
any single-deletion correcting code may be used for detecting
a single translocation error. An elegant construction for single-
deletion correcting codes for permutation was described by Lev-
enshtein in [21]. The resulting code has cardinality and
is optimal since, from Proposition 8, we have

Hence, .
Levenshtein’s construction is of the following form.
Let

where denotes that is a divisor of . For , let
be a vector with

if
if

The code

(9)

of size is capable of correcting a single deletion. Hence,
this code can detect a single translocation error as well.
Let be the set of sequences of length that can be

obtained from some permutation in by deletions. In other
words, is the set of words of length from the alphabet
without repetitions. A code is a perfect code ca-

pable of correcting deletions if, for every , there exists
a unique such that can be obtained from by dele-
tions. It was shown in [21] that in (9) is a perfect code capable
of correcting a single deletion.
The minimum Levenshtein distance of is and thus

the minimum Ulam distance of is . Since the size of
equals and elements of can be obtained
by deletions from each , we have that .
Recall from Proposition 8 that the size of a code with minimum
Ulam distance is . Thus, a perfect code capable
of correcting deletions, if it exists, is a rate-optimal code in
the Ulam metric. Although conditions for the existence of such
codes were investigated in [21], both necessary and sufficient
conditions are known only for a small number of special cases.
In Sections IV-B and IV-C, we describe codes capable of

correcting a single right-translocation error and codes capable
of correcting a single translocation error. In the constructions,
we make use of a single-transposition error detecting code, de-
scribed next.
A Single-Transposition Error Detecting Code: For
, let as before denote the transposition distance

between and . The parity of a permutation is defined as
the parity of . It is well known that applying a transpo-
sition to a permutation changes the parity of the permutation,
and also that, for , half of the permutations in are even
and half of them are odd.4 Hence, the code containing all even

4More precisely, the symmetric group can be partitioned into the alternating
group and its coset.

Fig. 3. Effect of the right-translocation error on the codeword
. The result is the word .

permutations of is a single-transposition error detecting code
of length and cardinality .

B. Correcting a Single Right-Translocation Error

Next, we present a construction for codes that correct a single
right-translocation error. For this purpose, we first define the
operation of permutation interleaving and the operation of code
interleaving.
Definition 13: For vectors , of lengths with

, the interleaved vector
is obtained by alternatively placing the

elements of in order. That is,

(10)

where . For a class of codes , let

(11)

For example, for vectors and of length , we have

(12)

and for vectors and of lengths and , respectively,
we have

(13)

The following proposition introduces codes that can correct a
single right-translocation error. The decoding algorithm is con-
tained in the proof of the proposition.
Proposition 14: Let , 2, be the set of odd and even

numbers in , respectively, and let be the set of even per-
mutations of for , 2. The interleaved code
corrects a single right-translocation error.

Proof: Given the permutation , we want to find the
unique such that . An example
is shown in Fig. 3, with and un-
known to the decoder.
The th element of is out of place if . It

is easy to see that

i.e., equals the smallest integer such that the th element
of is out of place. In the example shown in Fig. 3, .
Finding is slightly more complicated since we must consider
two different cases depending on the parity of the length
of the right-translocation.
Let . If is odd,

then . Otherwise, . That is, the right-
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translocation error is either or . Thus,
the codeword either equals or equals

. In the example of Fig. 3, we have

To find which of the two cases is correct, we proceed as follows.
Since and , we have

Recall that if is odd, then , and if is even,
then . Hence, . In both
and , the parity of the elements is the same as the parity

of their positions. Thus, the transposition affects
only elements of the same parity as . Hence, if is odd, then

and if is even, then
.

Without loss of generality, assume that is even. Then,
and the subwords and differ in

one transposition. Since has minimum transposition distance
two, only one of and belongs to , and so can be
uniquely determined as being either equal to or .
The cardinality of the interleaved code equals

, and its rate asymptotically equals

C. Correcting a Single Translocation Error

The construction of Section IV-B can be extended to generate
codes capable of correcting a single translocation error as stated
in the following proposition. Although the proposition is stated
for being a multiple of three, it can be easily extended to other
cases.
Proposition 15: Suppose is a multiple of three. Let

be the set of numbers in that are equal to modulo
three, and let be the set of even permutations of for ,
2, 3. The interleaved code corrects a single
translocation error.

Proof: Suppose that is the stored permutation, is the
retrieved permutation, and that the error is the translocation

. If , then can be easily identified. Sup-
pose that . The translocation moves
elements of one position to the left, provided that , or
one position to the right, provided that . In either case, one
element moves in the “opposite direction” from the other ele-
ments. Hence, for , the direction of the translocation
(left or right) can be identified.
Once the direction of the translocation is known, can be

found as follows: if the error is a right-translocation, then

and if the error is a left-translocation, then

For simplicity, suppose the error is a right-translo-
cation. The proof for left-translocations is similar. Let

. We have the fol-
lowing three cases. If , then
and

If , then and

Finally, if , then and

So, if , then and
is uniquely determined as . Otherwise, the error is
either or . Let and

. Then, and similar
to the proof of Proposition 14, it can be shown that and
are not both in . Hence, can be determined as either being
equal to or .
Example 16: Consider the single translocation-cor-

recting code for . For this case, we have
and .

Suppose that the stored codeword is , the error is ,
and the retrieved word is

Given , the decoder first identifies the elements that are out
of order, i.e., elements that are not equivalent to their positions
modulo three—in this case, . Since more than
two elements are out of order, we have . Furthermore,
since more than two elements have moved one position to the
left, is a right-translocation. Observe that and that

. Hence, we let

We then have and . Since
only is an even permutation, the error is and thus

.
The cardinality of the code equals , while its rate

equals

V. -TRANSLOCATION ERROR-CORRECTING CODES

We describe next a number of general constructions for
-translocation error-correcting codes. We start with an exten-
sion of the interleaving methods from Section IV.

A. Interleaving Codes in Hamming Metric

We construct a family of codes with Ulam distance ,
length for some integer , and cardi-
nality , where , as before,
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denotes the maximum size of a permutation code with length
and minimum Hamming distance . The construction relies on
the use of permutation codes, each with minimum Ham-
ming distance at least . First, we present the proposed
construction and then prove that the minimum Ulam distance
of the code is at least .
For a given and , where , partition the

set into classes , each of size , with

(14)

For example, for and one has

and so on.
For , let be a permutation code over with

minimum Hamming distance at least .5 The code is
obtained by interleaving the codes , i.e., ,
and is referred to as an interleaved code with classes. In
the interleaved code, the elements of occupy positions that
are equivalent to modulo .
The following theorem provides a lower-bound for the min-

imumUlam distance of . The proof of the theorem is presented
after stating the required definitions and three technical lemmas.
Theorem 17: Assume we are given three positive integers
, , , and a partition of of the form given
in (14). If, for , is a permutation code over
with minimum Hamming distance at least , then

is a permutation code over with minimum
Ulam distance greater than or equal to .
Corollary 18: For the code of Theorem 17 and distinct

, the length of the longest common subsequence of
and is less than .
For convenience, we introduce an alternative notation for

translocations. Let the mapping be defined as
follows. For a permutation , an integer , and ,
let denote the permutation obtained from by moving
the element exactly positions to the right if and to
the left if . In other words, for any permutation
and ,

For example, we have
. Note that the mapping is written mul-

tiplicatively. Furthermore, with slight abuse of terminology,
may also be called a translocation.

Consider with distance . A transfor-
mation from to is a sequence of transloca-
tions such that .
Let be the elements of that are not in

the longest common subsequence of and . Each is called
a displaced element. The set is called the set of
displaced elements and is denoted by .

5It is clear that instead of using permutation codes for interleaving, one can
also use codes with distinct symbols such as those described in [36].

The canonical transformation from to is a transforma-
tion with for appropriate choices
of . In other words, the canonical transformation op-
erates only on displaced elements and corresponds to a shortest
sequence of translocations that transform into .
As an example, consider and

. Here, , , and .
The canonical transformation is and we have

(15)

In this example, .
Let for . An element is

moved over an element in step if there exists a translocation
in the canonical transformation such that is on
the left (right) of in and on the right (left) side of in
. That is, moves from one side of to the other side. In

the above example with , 2 is moved over 4 but it is not
moved over 7.
An element is called a pivot, or simply a

pivot, if no element of is displaced, i.e., .
In the example corresponding to (15), the pivots are 1 and 3.
For , define as . Also, recall that for

and a set , denotes the projection of onto .
For example, for , , , and

, we have . We
say that has a correct order if for every ,
elements of and appear alternatively in , starting
with an element of . In the example above, has a correct
order.
Consider and suppose that .

The elements of the set may be viewed as
separating subsequences of consisting of elements not in .
That is, we may write

where the ’s are nonintersecting subsequences of . For
each , the subsequence is called the th segment
of with respect to and is denoted by . Such a
segmentation is shown next for the permutation

Each segment is marked with a bracket:

To better visualize the subsequences in question, we may re-
place each element of by and write as

We have, for example, and
.
Definition 19: Consider , ,

and . Suppose, without loss of generality, that
. The sequence is defined as follows.

1) If , then equals .
2) If , then, for , let

whenever has length
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one, and let otherwise. Here, is a special
notational symbol.

3) If , then, for , let
whenever has length

one, and let otherwise.
As an example, if ,

, , and
, the segments of

with respect to are , , , , and , in the
given order, and we have .
Lemma 20: Consider the interleaved code of Theorem 17

and let . Furthermore, let be such that
. There exists at least one subset of size at least

such that has a correct order.
Proof: There are at most displaced elements and, thus,

at most classes containing a displaced element. Hence, there
exist at least classes without any displaced
elements and, consequently, at least -pivots. Let be
the set consisting of these pivots. It is clear that obtained in
this way has a correct order which proves the claimed result.
Lemma 21: For all positive integers and and all permuta-

tions , with , if is a -pivot, then
for :

Proof: Assume and let
be the canonical transformation from to , so that

. We prove the lemma by induction on
. Clearly, if , then

Let . As the induction hypothesis, as-
sume that

By the triangle inequality, it suffices to show that

(16)

Suppose so that . Since is a
pivot, we have . We consider two cases: and

. First, suppose . Since , we have
and thus .

On the other hand, suppose . Then, appears
in of and in
of , for some . The only segments affected by the
translocation are and ,
and thus, for , we have

. Hence, for , we find
, implying that .

Lemma 22: Consider the interleaved code of Theorem 17.
Let and such that . If
is of size at least and has a correct order, then
1) for each , and,
2) for and , .

Proof: Since there are at most classes containing dis-
placed elements and has size at least , there exists a pivot

. Then, by Lemma 21

Since is a codeword in , by construction, we have
. Furthermore, since has a correct order, we

have . Hence

To prove the second part, we proceed as follows. Assume
, with , is the canonical transforma-

tion from to so that .
We first show that may be decomposed into four

parts

with such that

(17)

and such that no moves over an element of .
It can be easily verified that any two translocations

and “commute.” That is, for any permutation ,
we can find translocations and such that

. Thus, we have the
decomposition

with such that

Furthermore, it is easy to see that we may write as

with

such that no moves over an element of . Hence, for
any permutation , one can write a decomposition of the form
(17).
Let , and ,

so that . By the triangle inequality

It is clear that .
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Next, consider and its transform induced by the

translocations . Note that has a correct

order. Since no translocation moves over an element
of , each moves over at most one element of .
Thus, each can modify at most two segments and we have

. Furthermore, each modifies at

most two segments and thus . Hence

Proof. (Theorem 17): Suppose the minimum Ulam dis-
tance of is less than . Then, for two distinct codewords

, there exists an such that and
.

Since , there exists such that ,
which implies that . Since ,
by Lemma 20, there exists of size at least
such that has a correct order.
If , by Lemma 22, and

, which together imply .
On the other hand, if , by Lemma 22, for any ,

and , which again
imply .
Hence, by contradiction, the minimum distance of is at

least .
The rate of the aforementioned translocation correcting codes

based on interleaving may be estimated as follows. The cardi-
nality of the interleaved code of length and minimum dis-
tance is at least for odd , and

for even . The construction is ap-

plicable only if , in which case the asymptotic
rate of the interleaved code equals

where we used Theorem 11 to obtain the last equality. For ex-
ample, if , , then

and one obtains a translocation error-correcting code of rate

In the next section, we describe a modification of the inter-
leaving procedure, which, when applied recursively, improves
upon the code rate .

B. Interleaving Codes in the Hamming Metric and the Ulam
Metric

The interleaving approach described in Section V-A may
be extended in a straightforward manner. Rather than inter-
leaving permutation codes with good Hamming distance, as
in Section V-A, one may construct a code in the Ulam metric
by interleaving a code with good Ulam distance and a code
with good Hamming distance. Furthermore, this approach may
be implemented in a recursive manner. In what follows, we
explain one such approach and show how it leads to improved
code rates as compared to simple interleaving.
We find the following results useful for our recursive con-

struction method.
Lemma 23: Let be two permutations, such that

. Then, there exist at most three positions ,
, such that for some :

1) ;
2) .
Proof: Suppose . The proof follows from

the simple fact that when applying a translocation to
, the positions described above are among

if
if

Corollary 24: Let be two permutations, and as-
sume that there exist different positions , ,
such that , but for some

. Then, .
For an integer , let and let

. Note that

(18)

Theorem 25: For , and described above, if
, then

Proof: Let and . We show that
the number of indices in with respect to that satisfy
the conditions described in Lemma 23 is at least . Then, the
claim of the theorem follows when we apply Corollary 24 with

.
Assume that for some . For each

such , the two indices and can both serve as index
in Lemma 23:
1) We have , yet

2) Let be such that . It is easy to see
that . Then
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Let . From Theorem 25, we have
the following corollary.
Corollary 26: For integers and with , let

and suppose is a code
with minimum Hamming distance at least . Then, is a
code in with minimumUlam distance at least and with size
.
Hence, for odd , we can construct a translocation code

with length , minimum distance at least , and size
. This can be easily generalized for all

to get codes of size

By assuming that the permutation code in the Hamming
metric is capacity achieving, the asymptotic rate of the con-
structed code becomes

(19)

where . Therefore, this code construction incurs a
rate loss of when compared to the capacity, which in
this case equals .
The final result that we prove in order to describe a recursive

interleaving procedure is related to the longest common subse-
quence of two sequences and the minimum Ulam distance of
interleaved sequences.
Lemma 27: For and , we have

where .
Proof: Without loss of generality, assume that is the iden-

tity permutation. It is clear that . Hence

Lemma 28: For sets and of sizes and , respectively,
let be a code with minimumUlam distance and let

be a code with minimum Hamming distance .
The code has minimum
Ulam distance .

Proof: For and with
, we show that .

The case follows from a simple use of Theorem 25.
Assume next that . Then, by Lemma 27,

and this completes the
proof.

Let . For a given , set and set
. Suppose is a code

with minimum Ulam distance and is a code with
minimum Hamming distance . Assuming that permutation
codes with this given minimum Hamming distance exist, we
only need to provide a construction for . An obvious choice
for is a code with only one codeword. Then,
is a code with minimum Ulam distance and cardinality

The gap to capacity may be significantly reduced by ob-
serving that does not have to be a code of cardinality one,
and that may be constructed from shorter codes.
To this end, let where is a code of length

with minimum Ulam distance , while is a code of length
and minimum Hamming distance .

By repeating the same procedure times, we obtain a code
of the form

(20)

where each , , is a code with minimum Hamming dis-
tance and length and is a code with minimum
Ulam distance and length . Since each is a permuta-
tion code in the Hamming metric with minimum distance ,
we must have . To ensure that this condition is
satisfied, in (20), we let be the largest value of satisfying

. It is easy to see that . Further-

more, we choose to consist of a single codeword.
The asymptotic rate of the recursively constructed codes

equals

where the last step follows from . Note that
this rate is roughly equal to .

C. Permutation Codes in the Hamming Metric

In Section V-B, we demonstrated a number of constructions
for translocation error-correcting codes based on permutation
codes in the Hamming metric and codes over distinct symbols.
There exist a number of constructions for sets of permutations
with good Hamming distance, and codes with codewords con-
taining distinct symbols. For example, in [20] and [37]–[39],
constructions of permutations in using classical binary codes
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were presented, while other constructions rely on direct com-
binatorial arguments [40], [41]. An example of code construc-
tion for codewords over distinct symbols was presented in [36].
There, specialized subcodes of Reed–Solomon codes were iden-
tified such that their codewords consist of distinct symbols.
In the former case, if is a binary code, the con-

struction applied to yields a subset of of cardinality ,
with minimum Hamming distance . This construction and
constructions related to it may be used for permutation code
design, resulting in sets of permutations in of cardinality

and minimum Hamming distance . These per-
mutations may consequently be used to construct permutation
codes in with codewords and minimum Ulam
distance .
We describe a simple method for constructing sets of vec-

tors of length over such that all entries of the vector
are different, and such that the minimum Hamming distance be-
tween the vectors is large. In other words, we propose a novel
construction for partial permutation codes under the Hamming
metric, suitable for use in the recursive code construction de-
scribed in Section V-B.
The idea behind the proof is based on mapping suitably mod-

ified binary codewords in the Hamming space into partial per-
mutations. For this purpose, let be a binary code,
and for simplicity of exposition, assume that is a power of
two. Let . We construct a vector ,
where is a mapping as follows.
1) Divide into binary blocks of lengths

each. Again, for simplicity, we assume
that is a power of two.

2) For each block , , construct a vector of
length according to the following rule: The first

bits in equal , while the last
bits in represent the binary encoding of the index .
Note that the integer values represented by the binary
vectors are all different.

3) Form an integer valued vector of length over
, such that its th entry has the binary encoding specified

by . Observe that all the integer entries of such a vector
are different.

Now, take two vectors , such that their Hamming
distance satisfies . Let and be
the corresponding vectors of length over constructed as
described before. Then, there exist at least
blocks of length that are pairwise different. Therefore,
the corresponding entries in and are
pairwise different as well.
Consider the set of vectors

It is straightforward to see that the set has the following prop-
erties.
1) For any , all entries in are different.
2) For any , , the Hamming distance satisfies

.
The set can be used similarly as the set in the basic

construction to obtain codes over with minimum Ulam

distance at least

Note that in this case, only numbers in the range
are inserted between the numbers in , while

the Hamming distance of the vectors is preserved.
Lemma 29: The parameters , , and are connected by

the following equation:

From this lemma, if we take , then . By
taking a code with parameters , where
and are constants, we obtain a set of size and
Hamming distance . The corresponding translocation code
is able to correct translocation errors, and it has code-
words.

D. Decoding of Interleaved Codes

An efficient decoder implementation for the general family of
interleaved codes is currently not known. For the case of recur-
sive codes, decoding may be accomplished with low complexity
provided that the Hamming distance of the component permu-
tation codes is increased from to .
For simplicity of exposition, we assume where

is an integer. The case of even may be handled in the same
manner, provided that one fixes the last symbol of all code-
words.
Let be the

stored codeword and let be the retrieved word.
For , denote by the substring of that starts

with element and ends with element . If appears
before in , then is considered empty. For ,
let if contains some unique element of

. Otherwise, let .
Lemma 30: The permutation differs from in at most

positions.
Proof: Let . There exists a sequence

of translocations such that .
For , let and let be given as

The set may be viewed as the set of elements displaced by
one of the translocations . Note that, for each ,

.
To prove the lemma, it suffices to show that , since

.
Let . We show that for .
The translocation either moves an element of or an ele-

ment of . First, suppose that it moves an element
of . Then, can affect only the substrings and of

. Next, assume that moves an element of .
It can then be verified that at most two substrings of may
be affected by the given translocation. Hence, .
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Assume now that is an interleaved code of the form

where and where is a permutation
code over the set with minimum Hamming dis-
tance .
Let be the stored code word and be the

retrieved word. Assume that . The first step of the
decoding algorithm is to extract from the permutation . By
Lemma 30, we have . Since has minimum
Hamming distance , can be uniquely recovered from .
Hence, for odd , if has minimum Hamming distance

, then has minimum Ulam distance at least and can
be decoded using the described decoding scheme. The afore-
mentioned decoding method may also be used on a recursive
construction of depth larger than one by first decoding the in-
nermost components.
Note that decoding is accomplished through Hamming dis-

tance decoding of permutation codes, for which a number of
interesting algorithms are known in literature [26], [27], [42].
Similar to (19), the asymptotic rate of the code can be found

to be , where . For the recursive
construction described in (20), the asymptotic rate of the effi-
ciently decodable codes outlined above equals

, with .
Remark: Permutation codes in , correcting adjacent trans-

position errors, were thoroughly studied in [23]. We note that
these codes can also be used to correct translocation errors. In-
deed, every translocation can be viewed as a sequence of at most

adjacent transpositions. Therefore, any code in that cor-
rects adjacent transpositions [for some function ] can
also correct translocations.
It was shown in [23, Th. 3.1] that the upper bound on the rate

of the code correcting adjacent transpositions is zero.
Such a code can also be used to correct translocation
errors. In comparison, the interleaved constructions described
above can also correct translocation errors, yet their rate
is strictly larger than zero.
The nonasymptotic and asymptotic rates of the discussed

code families are compared in Figs. 4 and 5.
Note that the gap from capacity of the constructions presented

in this paper is still fairly large, despite the fact that the codes
are asymptotically good. This result may be attributed to the
fact that the interleaving construction restricts the locations of
subsets of elements in a severe manner. Alternative interleaving
methods will be discussed in a companion paper.
In what follows, we describe a method of Beame et al. [30]

that provides translocation codes with minimum distance pro-
portional to . This covers the zero-capacity domain of
our analysis.

E. Zero-Rate Codes

We present two constructions based on the longest common
subsequence analysis. The first construction is based on
Hadamard matrices and was given in [30], while the second
construction is probabilistic.

Fig. 4. Rate versus distance for several code constructions with .
The numbers in the legend refer to the section where the corresponding code is
described. It is assumed that .

Fig. 5. Asymptotic rate versus distance for several code constructions. The hor-
izontal axis is .

Assume that a Hadamard matrix of order exists. To ex-
plain the construction, we consider permutations over the set

. Furthermore, the positions in each permuta-
tion are also numbered from 0 to .
Let . For , we denote

the representation of in base by where is
the most significant digit.
Let be a Hadamard matrix of order with rows and

columns indexed by elements in the set .
Without loss of generality, assume the first row and column
of are all-ones vectors. The set of permuta-
tions is constructed by defining the th element of , for

, as follows. Let ,
and let the th element of equal

where, for ,

if
if

The length of the longest common subsequence of any two per-
mutations of is at most . The permutations obtained
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Fig. 6. Permutation codewords based on Hadamard matrices [30].

in this way have length . Consequently, the minimum dis-
tance of the code is at least . Note that if ,
we can arbitrarily delete elements from each permutation to ob-
tain a set of permutations each of length .
As an example, consider and . We have

and . Four codewords of the code based on this Hadamard
matrix are plotted in Fig. 6.
Another construction based on [30] holds for ,

leading to permutations with minimum Ulam distance at least
. The number of codewords obtained from this

construction is exponentially smaller than what may be obtained
via random methods, as we demonstrate next.
Let denote the Ulam distance between a randomly chosen

permutation of length and the identity, .
From a result shown by Kim [43] (see also [44]–[46]), for

, one has

By letting with , for sufficiently large ,
we find

Suppose a code is constructed by randomly choosing
permutations in , with replacement. By left-invariance,

the bound above also holds for the Ulam distance between two
given codewords of . Using the union bound and the fact that
there are less than pairs of codewords, the probability that

there exist two permutations with distance is
bounded from above by

To ensure that the minimum distance of the code is at least
with high probability, we must choose such

that . Hence, we let , for
some . For this choice, with high probability, the random

code of size has minimum distance at least

. In particular, for , a random code

of size with high probability has minimum dis-

tance at least .
As already pointed out, the size of a randomly constructed

code obtained this way is exponential in , while the size of
the code from the explicit construction in [30]

is only linear in .

VI. CONCLUSION

We introduced the notion of translocation errors in rank mod-
ulation systems. Translocation errors may be viewed as gen-
eralization of adjacent swap errors frequently encountered in
flashmemories.We demonstrated that themetric used to capture
the effects of translocation errors is the Ulam distance between
two permutations, a linear function of the longest common sub-
sequence of the permutations. We also derived asymptotically
tight upper and lower bounds on the code capacity. Further-
more, we presented a number of constructions for transloca-
tion error-correcting codes based on interleaving permutation
codes in the Hamming metric and deletion-correcting codes in
the Levenshtein metric. Finally, we exhibited a low-complexity
decoding method for a class of relaxed interleaved codes of
nonzero asymptotic rate.
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