
1930 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 4, APRIL 2010
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Abstract—The “Japanese” theorem is extended to multiple mul-
ticast sessions in an arbitrary network to characterize the routing
capacity region by the intersection of an infinite collection of half-
spaces. An elimination technique is developed to simplify this in-
finite description into a finite one based upon the shortest routing
paths and trees in the network graph. This result is used as a step
in providing the capacity regions for two multimessage multicast
problems on undirected ring networks; in the first case only uni-
cast and broadcast sessions are considered, and in the second case
multicast sessions where the source and destination vertices form
lines of adjacent vertices are studied. Network coding is generally
necessary to achieve network capacity, but for our multimessage
multicast problems, new arguments are used to demonstrate that
routing can achieve network coding bounds.

Index Terms—Japanese theorem, multicast sessions, network ca-
pacity, ring networks, routing.

I. INTRODUCTION

A fundamental problem of network information theory is to
compute the capacity region of a network with multiple

simultaneous communication sessions. A session refers to the
communication from a source vertex to a set of destination ver-
tices. A unicast session has a single destination, a multicast ses-
sion has at least two destinations, and a broadcast session is the
special case of a multicast session where all of the vertices in
the network except the source are destinations. Before the sem-
inal work by Ahlswede et al. [1] the throughput of a wireline
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network was generally studied in terms of routing protocols.
Routing allows vertices to only receive and forward the mes-
sages of different sessions; it does not permit more complex
operations on messages. Reference [1] showed that the max-
imum throughput of a single multicast sesson is the capacity of
the minimum cut from the source to all destinations; a cut is a
set of edges which, when removed from the network, leave at
least one destination in a different component of the resulting
network from the source. This capacity is not generally achiev-
able by routing. Sometimes network coding is necessary; i.e.,
vertices are allowed to send some function of the data that they
receive from other vertices in the network and their own mes-
sages along their outgoing links. We will, respectively, refer to
the network coding capacity region or routing capacity region
of a network as the set of achievable rates among the concurrent
sessions using network coding or routing protocols.

Finding the routing capacity region of a network is equiva-
lent to solving the problem of fractionally packing Steiner trees
in the network graph; a Steiner tree is a tree which connects the
source of a session to all destinations of that session. The routing
capacity region is an inner bound to the network coding capacity
region for the same communication problem. Li et al. [18] con-
sidered undirected networks in which communication links are
bidirectional, and the total flow in both directions is limited by
the capacity of the link. They showed that for a single multi-
cast session the “Steiner strength” of an undirected network pro-
vides an upper bound to the network coding capacity which is
at most twice the routing capacity for the same problem. This
bound does not extend to graphs with multiple multicast ses-
sions, and there is often a gap between the routing capacity re-
gion and the best information theoretic outer bounds on the net-
work coding capacity region such as those offered by bidirected
cut set bounds [13] or progressive d-separating edge set (PdE)
bounds [14], [15].

In this paper, we develop a new technique which leads to the
tight characterization of the routing capacity region of an ar-
bitrary network. The routing capacity region of networks with
multiple sessions can be formulated as a system of linear in-
equalities in the (total) rates and the partial rates; each partial
rate is the portion of the flow of a session that is routed along a
specific Steiner tree. This initial formulation is not the solution
to our problem because we do not want the partial rates as part
of our description. Fourier–Motzkin elimination [24] is a pro-
cedure to project the set of solutions of a general set of linear
inequalities to a subset of the variables; this can in principle
be applied to the initial formulation of our problem to obtain
the routing capacity region, but this approach would be com-
plex. Our strategy is different. The “Japanese” theorem of [9],

0018-9448/$26.00 © 2010 IEEE



TABATABAEI YAZDI et al.: MULTIMESSAGE CAPACITY REGION 1931

[20] describes the routing capacity region of networks with mul-
tiple unicast sessions and no multicast sessions as an infinite
set of inequalities. Each inequality corresponds to a different
vector of “distances” assigned to each edge in the network. Each
edge distance can be chosen as an arbitrary nonnegative integer,
and this is why there are initially infinitely many inequalities
to consider. We extend the Japanese theorem to networks sup-
porting multiple multicast sessions, and this again results in an
infinite description of the capacity region. We next consider the
boundary points of the polyhedral solution and develop a novel
algorithmic technique to find the finite set of necessary and suffi-
cient inequalities among the infinite set of Japanese theorem in-
equalities. More specifically, our “inequality elimination” tech-
nique checks the redundancy of any inequality in defining the
routing capacity region.

A second focus of this paper is the network coding capacity
region of undirected ring networks. An undirected ring network
is a mathematical model consisting of an undirected graph with
the topology of a cycle; the vertices of the graph communicate
via edges, and the sum of the flow along the two directions of an
edge is bounded by its capacity. In the past two to three decades,
the increasing need for high-bandwidth, reliable, and poten-
tially long-distance communication systems caused by various
high-demand and real-time applications and services resulted in
the extensive deployment of communication networks based on
SONET/SDH rings (see, e.g., [2], [6], [25], and [28]). Because
of their commercial importance, ring networks have been widely
studied. The routing capacity region of multiple unicast sessions
in undirected ring networks was first derived by Okamura and
Seymour [19] as the special case of a more general result for
planar graphs and later by Vachani et al. in [28] with a different
method. The necessary and sufficient conditions for a collection
of multiple unicast sessions to be feasible by routing is for the
total rate across every cut in the network to be bounded from
above by the capacity of the cuts. For ring networks it is known
that the cut set bounds offer a tight characterization in the special
case of multiple unicast sessions [8], [13], [22]. These bounds
correspond to the set of Japanese theorem inequalities with ex-
actly two nonzero edge distances, both of which are equal to
one. We focus on the two special cases where

• the source and destination vertices of each communication
session form a string of adjacent vertices, and

• each session is either a broadcast or a unicast session.
In these cases we derive the routing capacity region and use a
new argument to show that routing is rate-optimal; i.e., the net-
work coding capacity region is no larger than the routing ca-
pacity region. We use our inequality elimination technique to
prove that for the two special cases of the multiple multicast
problem that we study here, we can restrict our attention to edge
distances in the set . The next step of our analysis is to
show that the network coding capacity region of each of these
communication problems is identical to its routing capacity re-
gion. Our outer bounds on the network coding capacity region
are based on a new analysis which extracts common informa-
tion from edge cuts in order to increase some of the coefficients
of the rates that appear in the inequalities.

While our focus is on the derivation of capacity regions,
earlier work has considered other aspects of deploying net-

work coding in ring networks. For example, the authors of
[7] investigated the benefits of network coding for saving
energy in a number of broadcast wireless network topologies
including rings. They showed that low complexity network
coding schemes double the energy efficiency of ring networks.

A different aspect of ring networks is considered in [23],
which studies packet-switched wavelength division mul-
tiplexing (WDM) on unidirectional and bidirectional ring
networks. In this model the total capacity of the ring is di-
vided into different wavelengths, and each node has access to
a specific wavelength for receiving or sending packets. The
authors of [23] consider a destination stripping protocol, where
packets are removed from the ring by their destinations upon
the completion of transmission. The authors investigate various
statistics of the routing capacity region for a probabilistic
multiple multicast problem in which the probability that a
particular session is among the set of sessions to be supported
is proportional to its number of destinations.

The remainder of this paper is organized as follows: In
Section II we generalize the Japanese theorem to multiple
multicast networks. We next develop our elimination technique
to reduce the infinite description of the routing capacity region
into a finite one. In Section III, we consider two classes of
communication problems on undirected ring networks and
prove that in these cases we need only consider edge distances
in . In Section IV, we establish that the routing bounds
also apply when network coding is permitted and conclude that
routing is rate-optimal.

II. ROUTING CAPACITY REGION IN NETWORKS

A. The Japanese Theorem

Consider an undirected or directed network in which
the edge set is , the vertex set is

where for every set , denotes the cardinality
of the set. Let denote the set of multicast sessions. Let rep-
resent the capacity of edge , i.e., the maximum flow that
can pass through edge . In this paper, we assume that all ca-
pacities are rational. A multicast session with rate is
defined by a source vertex and a set of destination ver-
tices each of which receives the messages in session .
The set of trees that span in is denoted by . A fea-
sible routing solution assigns to each spanning tree
a partial rate that satisfies the following two conditions:

1) for every
2) for every .

We call the rate vector routing-feasible if
there is a feasible routing solution for it. The “Japanese” the-
orem of [9], [20] characterizes the set of all routing-feasible
rate vectors for an arbitrary network with multiple unicast ses-
sions with an infinite set of linear constraints. We start by the
extending the Japanese theorem to the multiple multicast case.
Let denote a “distance” vector that assigns
edge a nonnegative integral distance . Then for any path or
tree we define its length to be the sum of the distances
of the edges in . Let . The Japanese
theorem of [9], [20] is as follows.
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Theorem 2.1 (The Japanese Theorem): If is a set of uni-
cast sessions, the polytope of all routing-feasible rate
vectors is shown in (1) at the bottom of the
page.

The following result generalizes Theorem 2.1 to include mul-
tisession multicast routing.

Theorem 2.2 (The Extended Japanese Theorem): If is a
set of multicast sessions, the polytope of all routing-
feasible rate vectors is also determined by
(1).

Theorems 2.1 and 2.2 are both consequences of Farkas’
Lemma (see, e.g., [30, Sec. 4.1]). We prove Theorem 2.2 in
Appendix I.

Because Fourier–Motzkin elimination results in a finite de-
scription of the routing capacity region, it follows that the infi-
nite set of inequalities in Theorem 2.2 contains infinitely many
redundant constraints. We next introduce a method to eliminate
the redundant constraints.

B. The Reduced Set of Inequalities

An inequality in (1) is said to be redundant if it is implied
by other inequalities in (1). A minimal set of inequalities that
defines is then a subset of inequalities in (1) with no redun-
dant inequality. For distance vector , we say that rate vector

is on the hyperplane corresponding to if
. We have the following result.

Lemma 2.3: A minimal set of inequalities that defines
is unique up to the multiplication of inequalities by positive
scalars. Furthermore, if and are two distance vectors such
that every routing-feasible rate vector on the hyperplane cor-
responding to is also on the hyperplane corresponding to ,
then the inequality corresponding to in (1) is redundant.

Proof: See Appendix II.

Lemma 2.4: The routing-feasible rate vector is on the
hyperplane corresponding to if and only if

1) For each session and every , if
; i.e., session is routed only along the

shortest paths and trees determined by the distance vector
, and

2) for every with ;
i.e., every edge with a nonzero distance is fully utilized.
Proof: To establish necessity, assume that the rate vector

is routable and is on the hyperplane
. For any edge in the network,

the sum of all flows passing through it is at most . By
multiplying both sides of this inequality by and summing
the resulting inequalities over all edges we find that

(2)

A lower bound for the left-hand side (LHS) of the pre-
ceding inequality is obtained when all sessions are routed
along their shortest spanning trees:

. As we as-
sume that the rate vector is on the hyperplane given by

, it follows that Condition 1)
holds. To arrive at a contradiction, suppose next that Condition
2) is invalid. Hence, the rate-tuple is also
routing-feasible in network with link capacities for
in which for all with strict inequality for at least
one value of with . The extended Japanese theorem (1)
implies that

(3)

which contradicts . Thus Condi-
tion 2) holds.

To establish sufficiency, consider a routing-feasible rate
vector which satisfies Conditions 1) and 2). The argu-
ment for constraint (2) applies for any routing-feasible
point, and Condition 2) implies that (2) can be replaced
by . By Condition 1)
we know that

(4)

Hence the rate vector is on the hyperplane corresponding to
, completing the proof.

As we will next see, the true significance of the vector of edge
distances in the extended Japanese theorem lies in the collection
of shortest routing paths and trees for that distance vector used
by the various unicast and multicast sessions; this can be viewed
as a variation of Wardrop’s principle [29].

Proposition 2.5: Consider two distance vectors,
and . If

1) for every edge , implies , and
2) for every session and tree ,

implies ,
then the inequality corresponding to distance vector is redun-
dant in defining polytope given the inequality corresponding
to distance vector .

Before we prove this result, we will discuss an example of
it. Consider an undirected ring network with
which supports all possible unicast and multicast sessions. We
represent session as . Then our set of sessions is
given by

. Let
. Suppose and

. It is straightforward to confirm that

for all nonnegative integral distance vectors (1)
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• and the shortest path is ,
• and the shortest path is ,
• and both paths are shortest,

and
•

and the shortest tree is .
Therefore, the halfspace resulting from distance vector is
shown in (5) at the bottom of the page. Next take .
Observe that the shortest paths and shortest trees for each
session under distance vector continue to be shortest paths
and shortest trees for the sessions under , although has a
second shortest path for unicast sessions and and
a second shortest tree for the multicast sessions. The halfspace
resulting from is

(6)

The proposition stipulates that (5) is redundant for specifying
the routing capacity region given (6). The proof establishes
that every routing-feasible rate-tuple like

, which
satisfies (5) with equality necessarily satisfies (6) with equality.
The rate-tuple ,
exemplifies a routing infeasible rate-tuple which satisfies (5)
with equality; notice that four units of capacity are needed to
route two units of multicast traffic, while the network has only
three units of capacity.

Proof: Consider a routing-feasible rate vector on the hy-
perplane defined by . By Lemma 2.4, Condition 1), every ses-
sion is routed only along the shortest paths and trees for , and
hence by assumption only along the shortest paths and trees for

. Furthermore, note that any edge with must have
by assumption, and hence this edge must be fully uti-

lized by Lemma 2.4, Condition 2). By Lemma 2.4, it follows that
the routable point also is on the hyperplane defined for distance
vector . Therefore, by Lemma 2.3, the bound corresponding to

is redundant given the inequality corresponding to .

We offer an alternate algebraic proof for Proposition 2.5 in
Appendix III. Proposition 2.5 provides a powerful algorithmic
technique for deriving the minimal set of inequalities for de-
scribing polytope , and we next apply it to two communica-
tion problems on undirected ring networks.

III. THE ROUTING RATE REGION IN RING NETWORKS

In this section we focus on the ring network , with set
of vertices , and set of edges ,
as illustrated in Fig. 1. As an additional notation for rings, let

denote the distance in the clockwise direction between

Fig. 1. An undirected ring network with � vertices.

vertices and assuming distance vector . As a first step in
understanding the general multiple multicast problem on undi-
rected ring networks, we focus here on the analysis of two spe-
cial cases. In the first case, we consider a ring network in which
each session is a line session; i.e., the source and
all destinations form a sequence (in any order) of adjacent
vertices in the network. In the second case, we study the ring
network problem with multiple unicast and broadcast sessions.
These special cases already require new techniques, and we are
unaware of similar analyses in the literature. Our approach in
each case is to show that for an arbitrary nontrivial distance
vector we can construct a nontrivial distance
vector with the following properties:

• Property 1: or 1 for all ,
• Property 2: whenever ,
• Property 3: for every session , if and

, then .
Hence, Proposition 2.5 implies that distance vector can be
eliminated by . It then follows that we can restrict our attention
to distance vectors in the set .

Remark 1: For ring networks it is sometimes more conve-
nient to restate Property 3 in terms of the complementary trees
of each session. Let denote the set of routing trees of ses-
sion . Then the complementary tree of a tree is
the tree that remains after removing the edges and internal ver-
tices of from . Let denote the set of all complementary
trees corresponding to session . For distance vector let
denote the sum of all edge distances in the network. Given
and tree , it follows that . Therefore,

. We con-
clude that tree satisfies if and only if

. Therefore, Property 3 is equivalent
to the following.

• Property 3’: for every session , if and
, then .

Finally consider session with and ,
where . Let us denote
the path from vertex to vertex in the clockwise direction on

(5)
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the ring by . Then it is easy to verify that: See (6a) at
the bottom of the page.

We next provide an algorithm for constructing
for a given .

A. Algorithm for Constructing a Binary Distance Vector for
Distance Vector for the Case of Line Sessions

Consider a set of line sessions . Let
and take to

be the set of indices of all edges of maximum distance in , so
that . Without loss of generality,
we can assume that and so . We abuse
notation somewhat and write as the
length of the clockwise path from vertex to vertex . The
following algorithm shows that every distance vector can be
reduced to a binary distance vector.

1) Set for all with .
2) Set .
3) Complete the following steps:

a) Set .
b) Search for an index such that , but

, and . If such a exists,
it must be unique. In this case let and return to
Step 3. If no such exists, go on to Step 4).

4) Set each remaining edge distance in to 0.
We illustrate the algorithm above with an example:

Example 1: Consider distance vector .
Then and we set . We initialize and set

. Since and , we next set
and . Because and

we set , . As we can not further increase we
next set . The output of the algorithm will be

.

B. Proof of the Algorithm Performance

It is clear that the algorithm satisfies Properties 1 and 2; we
next show that it also satisfies Property 3. Fix a line session

. For convenience, we relabel the vertices of the ring so
that the source and all destinations for the session are all on
a line starting at vertex 1 and ending at vertex . (Note
that we may now have .)

Consider the set of complementary trees for session

Observe that

To show that Property 3’ holds we must verify that if and
, then .

We begin with some lemmas.

Lemma 3.1: The vector produced by the algorithm satisfies
.

Proof: By Step 3) of the algorithm we have . To
arrive at a contradiction, for some suppose ,
is the next smallest integer for which , and there is some

with and . Then Step 3) of the
algorithm implies that . However, since
, it follows that ,

which is a contradiction. Therefore .

Lemma 3.2: If , then there is at most one edge
for which .

Proof: Suppose instead that there are
with , , and . Then
Step 3b) implies that and .
However, it then follows that ,
which contradicts the assumption that .

Lemma 3.3: If , then there is exactly one edge
for which .

Proof: Suppose first that there is no edge
with . Let be the largest integer for which .
Then . However, since

this can not happen. Next suppose that there are and
with and .

By Step 1), implies . By Step 3b), since
and , it follows that .

Observe that , which
is a contradiction.

Lemma 3.4: If , then there exists
such that .

Proof: Suppose that there is no such with , and
let be the largest integer less than with . Then

. This contradicts the fact that
.

Since , there are two
possibilities for .

1)
2)

We consider the following three cases; the first two corre-
spond to , and the third corresponds to

. In each case we find the maximum
length complementary trees with respect to and show that
they are also maximum length with respect to .

• First suppose that and
. Then by Lemma 3.1 we

have , and
by Lemma 3.2 at most one among the edges in

(6a)
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will have a unit edge
distance in . Therefore, . Also,
if for , , then

for some . Since
, it follows that Property 3’

is satisfied.
• Next suppose that and

. Then by Lemma 3.1 we have
, and by Lemma 3.3, exactly

one among the edges in should
have a unit edge distance in . Hence
and . Also, if for ,

, then either
for some or , and
since , it
follows that Property 3’ is satisfied.

• Finally, suppose . Then by Lemma
3.4, at least one among the edges in

should have a unit edge distance in , and hence
. Also, if for ,

, then .
Since , we have that
Property 3’ is satisfied.

We have now shown that for any line session, our algorithm
generates a binary distance vector that satisfies Properties 1,
2, and 3. Thus, each distance vector with a distance greater than
one can be reduced to a binary distance vector. Therefore, by
Proposition 2.5 the routing capacity region can be determined
by all binary distance vectors.

C. Algorithm for Constructing a Binary Distance Vector
for Distance Vector for the Case of Unicast and Broadcast
Sessions

We next consider the routing capacity region of a ring with a
set of sessions such that or for all

. We again prove that binary distance vectors suffice for
describing polytope by constructing a binary vector which
eliminates a given distance vector .

We first assume all edge distances in are positive and sub-
sequently extend the algorithm to general distance vectors with
some zero elements. The heart of the algorithm is the following

Basic Generation Procedure:
1) If all are equal, then set for .

Otherwise, proceed to the next step.
2) Draw a circle , with points on its perimeter corresponding

to each vertex of the ring so that the length of the arc be-
tween two adjacent points on the circle is proportional to
the corresponding edge distance in .

3) From each point on the perimeter of draw a diameter
originating from that point.

4) If the arc corresponding to an edge on intersects at least
one diameter, then set the corresponding edge distance in

to one; otherwise set it to zero.
Example 2: Consider a ring network with 6 vertices and a

distance vector . We wish to find the cor-
responding binary distance vector according
to the Basic Generation Procedure. We first draw the circle
and all diameters for according to Steps 2) and 3) (see Fig. 2).

Fig. 2. An instance of applying the Basic Generation Procedure to a ring net-
work in which � � ��� �� �� �� �� ��.

Since edges 2, 3, 4, and 5 are intersected by at least one diameter
we set and . The resulting
binary distance vector is .

The Basic Generation Procedure sometimes needs a correc-
tion to result in a with the desired Properties; this depends on
the path lengths of the different unicast sessions. We will see the
appropriate method of constructing for different cases and a
proof of validity for each case:

First we categorize positive distance vectors based on the
path lengths of the different pairs of vertices into three types :

• Type 1: There is no pair of vertices with equal clock-
wise and counterclockwise routing path lengths by dis-
tance vector .

• Type 2: There is exactly one pair of vertices with equal
clockwise and counterclockwise routing path lengths by
distance vector .

• Type 3: There are multiple pairs of vertices with equal
clockwise and counterclockwise routing path lengths by
distance vector .

Theorem 3.5: If positive distance vector is of Type 1, then
the Basic Generation Procedure generates a distance vector
that satisfies Properties 1, 2, and 3.

Proof: See Appendix IV.

Theorem 3.6: If positive distance vector is of Type 2, then
either

1) the Basic Generation Procedure
or

2) the Basic Generation Procedure followed by the change
of a particular edge distance from 0 to 1 in results in
a legitimate vector that satisfies Properties 1,2, and 3.
Proof: See Appendix V.

Theorem 3.7: If positive distance vector is of Type 3, then
can be decomposed into several subvectors of Type 2 such that
a combination of the binary distance subvectors corresponding
to the subvectors of results in a distance vector that satisfies
Properties 1,2, and 3.

Proof: See Appendix VI.

To complete the algorithm, consider distance vectors with
at least one element being equal to zero. By Proposition 2.5 for
all we set if . Form a shorter distance vector,

, which is without its zero elements.
Observe that the length of a path between two vertices by in
a specific direction is equal to the length of the path between
a corresponding pair of vertices for in the same direction.
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Thus, given a suitable binary distance vector for , we can
find by appropriately inserting zero edge distances into .
Clearly preserves the shortest paths and broadcast trees for ,
completing the algorithm.

D. Concluding Remarks on the Extended Japanese Theorem

The algorithms that we provided in this section reduce a given
distance vector into a binary distance vector in linear time in the
size of the ring. The advantage of the reduction is that it provides
a simple and finite characterization of the routing capacity re-
gion as opposed to the infinite set of inequalities. The following
example illustrates the routing capacity region of a 3 vertex ring
network.

Example 3: Consider a ring network supporting the unicast
and broadcast sessions . The
routing capacity region of this problem can be derived by con-
sidering all binary distance vectors of length 3 and their corre-
sponding inequalities as follows:

• the distance vector results in the inequality
,

• the distance vector results in the inequality
,

• the distance vector results in the inequality
,

• the distance vector results in the inequality
.

Observe that binary distance vectors with all zeroes or a single
one result in trivial inequalities since the shortest trees have
length zero.

To conclude this section we point out that the bounds corre-
sponding to binary distance vectors are not in general sufficient
to characterize the routing capacity region of undirected rings
with multiple multicast sessions. For example, we have the fol-
lowing lemma.

Lemma 3.8: For an undirected ring with ver-
tices supporting all multicast sessions, the distance vector

for cannot be reduced to any
with .

Proof: To arrive at a contradiction, assume that we have
found a with that satisfies the condi-
tions of Proposition 2.5. Let be an arbitrary multicast session
with and , where

. Note that the set of complementary
trees for session is: See (6b) at the bottom of the page. Thus
to satisfy the conditions of Proposition 2.5, the longest trees in

with respect to should remain longest under .
Consider the multicast session from 1 to

. Here among the complementary trees
there are two longest trees

and under , and hence they should remain
longest under . Thus, . Likewise consider the
multicast sessions from 1 to , from 1 to

, from 1 to , and
from 1 to to obtain the constraints

...

(7)

Therefore

(8)

Next consider the multicast sessions from 1 to ,
from 1 to , from 1 to

, and from 1 to . The constraints
maintaining the longest complementary trees with respect to
results in the following set of equalities:

...

(9)

Hence

(10)

Since , (8) and (10) imply

(11)

and

(12)

Since distance vector , it follows that . Hence
should be an integer bounded below by , which is

a contradiction.

Although we were able above to characterize the exact
routing capacity region for two special cases, it appears difficult
to apply our tools to arbitrary collections of multiple multicast
sessions and/or arbitrary networks. However, these ideas offer
some insights that help to further characterize the minimal
set of distance vectors that define the routing capacity region
for general multiple multicast networks. Indeed, in a recent
work [11] we provide upper and lower bounds to show that the
maximum edge distance needed for multiple multicast sessions
in an undirected network grows exponentially with the size of
the largest cycle of the network. The lower bound was obtained
by demonstrating that a particular distance vector can not be
reduced to another distance vector with a smaller maximal
element. For the upper bound, observe that distance vectors are
characterized by their shortest trees for the various sessions.

(6b)
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Therefore for a given (and feasible) set of shortest trees, one can
solve an integer programming problem to determine a distance
vector with the same set of minimal trees. By investigating
the size and complexity of the integer program and applying
theorems of integer linear programming (see [24, Ch. 10]), we
establish that the integer program always has distance vector
solutions with elements that are exponentially large in the size
of the largest cycle of the network.

IV. NETWORK CODING BOUNDS

The set of routing bounds corresponding to binary distance
vectors provides an inner bound to the network coding capacity
region. To show that these bounds are tight for our two prob-
lems, we next present an information theoretic argument to es-
tablish the same bounds as outer bounds to the network coding
capacity region. We say that a session is of Type 1 if it is a line
session and is of Type 2 if it is a unicast or broadcast session. For

we say the set of sessions is of Type when every
is of Type . We first prove the following useful lemma:

Lemma 4.1: For a ring with vertices supporting a set of ses-
sions of Type 1 or of Type 2, every routing bound corresponding
to a binary distance vector with ones, , is equivalent to
a routing bound for a ring with vertices, where the distance
vector for this latter network is the all-ones vector.

Proof: For the ring with vertices and a binary distance
vector, create a possibly smaller ring by successively replacing
the vertices and with one vertex if and have zero distance
between them. The routing bound corresponding to the original
binary distance vector is clearly the same as the routing bound
for the new ring with an all-ones distance vector.

The proof that this routing bound is a network coding bound is
developed next. It is easy to verify that the sessions of Type 1 or
2 will still be of the same type for the smaller network. Therefore
we hereafter only consider distance vectors of the form

for a ring with vertices.
First consider a ring with ; here there are only two

sessions, from 1 to 2 and from 2 to 1. The routing bound
for this case, i.e., for is , and this
can easily be derived as a network coding bound using cut set
bounds on edges 1 and 2.

Next consider a ring with and distance vector . Here
all multicast sessions are always both of Type 1 and of Type 2.
The routing bound for this case is as follows:

(13)

To show that (13) holds for network coding, we use the bidi-
rected cut set bounds from [13] . Decompose each of the undi-
rected capacities , , and into two unidirectional capac-
ities: , , and ,
so that denotes the portion of the edge capacity which is
directed from vertex to vertex . Then (13) can be obtained
by summing the three bidirected cut set bounds derived from
the pairs of directed edges , , and

.
For distance vector , , it turns out that the bidirected

cut set bounds can not provide us with tight enough bounds for

Fig. 3. A ring with four vertices.

Fig. 4. A general ring with four sets of vertices.

the two types of sessions. In this case, we obtain our results
for network coding via another set of bounds which are derived
using the data processing inequality and the chain rule for mu-
tual information.

Theorem 4.2: Consider the ring with four vertices illustrated
in Fig. 3. Then for network coding:

(14)

Proof: See Appendix VII.

For larger ring networks, a similar relationship can be estab-
lished when vertices 1, 2, 3, and 4 are, respectively, replaced by
four sets of neighboring vertices , , , and .

Proposition 4.3: For the ring in Fig. 4 we have

(15)
where

•

•

•

•
and denotes the portion of the edge capacity directed from

to .
Proof: Consider a network in which the number of vertices

and the capacities , , , , , , , and
are the same as in our original network in Fig. 3, but all other
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edge capacities are infinite. Assume the same traffic demands
in the new network as in the original ring. A network coding
solution that achieves the demands of the original ring is also a
solution for this new ring. On the other hand, all capacities are
infinite within any four groups of vertices , , , or ,
so each group can be treated as a single supervertex. Hence, our
previous bound (14) for the ring of four vertices continues to
hold for this modified ring.

We next use (15) to show that any network code must satisfy
the routing bound corresponding to in an undirected ring
with vertices. Consider (15), and let denote the
inequality derived by setting and to be two vertices and
. For the values of or not between 1 and , we consider their

value modulo in . We separately study the two cases of
interest.

A. Proof of the Network Coding Bound for Line Sessions for

Consider a line session . By using (15) we wish to find the
coefficient of in . First suppose that .
By (15), does not belong to , or . Furthermore since
all source and destination vertices of are adjacent, is not in

. Therefore the coefficient of in this case is zero. Next
suppose that . In this case, belongs to one of
the sets , or , but not two of them together. Therefore
the coefficient of in this case is one. Finally suppose that

. In this case belongs to both and , and
therefore the coefficient of is two. As a summary of these
cases can be written as follows:

(16)

Next we derive the network coding bound for this case and show
that it is the same as the routing bound. Suppose that is

an even integer. Then consider the sum , which
can be expanded as shown in (17) at the bottom of the page.
Every directed capacity appears exactly once on the right-hand
side (RHS) of (17), and thus it is equal to . Furthermore

. Therefore (17) results in the
following:

(18)

Since for a line session the source and destination vertices
form a string of adjacent vertices, it follows that is the
number of destination vertices of on the ring. Hence, we ob-
tain a network coding bound which is the same as the routing
inequality for this case.

Next, suppose that is an odd number and con-
sider the sum . Using (16), this sum can
be expanded as (19)–(21) at the bottom of the page. Every
directed capacity appears in two terms of the sum-
mation of (21) which are the terms corresponding to

and . Therefore, (21) is . Next con-
sider that in in (20), every desti-
nation is counted twice, namely in the terms corre-
sponding to and . Therefore, (20) is

,
and, hence, the final result follows.

B. Proof of the Network Coding Bound for Unicast and
Broadcast Sessions for

Consider again the cases and separately.
Let denote the coefficient of on the LHS of
when is of Type 2. First notice that by definition, for a unicast
session with source vertex and destination vertex , if

and are on two sides of the ring which are separated by
vertices and , or if is or , then is one; otherwise

(17)

(19)

(20)

(21)
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it is zero. Furthermore, since a broadcast session is a special
case of a line session it follows that is .

For we consider the sum . Our pre-
vious arguments for line sessions implies that the RHS of this
summation is . Equation (22), shown at the bottom of
the page, is the LHS of summation. The coefficient of a broad-
cast session in (22) follows from the argument for line sessions.
For a unicast session consider and without
loss of generality assume that and . Then the
nonzero terms of the summation are

. Since , the coefficient of
will be , and therefore the network coding inequality

of the form

(23)

is obtained in this setting, which is the same as the corre-
sponding routing bound.

For , we can obtain the same inequality by instead
considering . We consider the counter-
part of (19)–(21) for this case. By the argument for line ses-
sions, the RHS of this summation is . Next, we expand
the LHS of this summation in (24), shown at the bottom of the
page. For a unicast session with and
consider . The nonzero terms of this sum-
mation are and

. Since
, and, there-

fore, the network coding inequality of the form

(25)

follows for this setting and is the same as the corresponding
routing inequality.

APPENDIX I
PROOF OF THE EXTENDED JAPANESE THEOREM

Here we prove Theorem 2.2. A rate vector
is routable in a network if and

only if the following linear program has a solution for :
1) for every
2) for every .
3) , for every and every .

Notice that the first set of inequalities can be changed to equal-
ities, but it is equivalent and more convenient here to work with
inequalities.

Label the elements of and from 1 to and from
1 to , respectively. Also label the elements of by

. For
, let

otherwise.

Define

(26)

(27)

and matrix as in (28) at the bottom of the next page. Then a
routing-feasible assignment of satisfies
the following matrix inequality:

(29)

Farkas’ lemma (see, e.g., [30, Sec. 1.4]) provides necessary and
sufficient conditions for the feasibility of a system of linear in-
equalities. The following lemma applies Farkas’ lemma to (29).

Lemma 4.4 (Farkas): There exists a solution to (29) if and
only if every row vector with and satisfies

.

is a broadcast session is a unicast session

is a broadcast session is a unicast session

(22)

is a broadcast session is a unicast session

is a broadcast session is a unicast session

(24)
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We define in (30) at the bottom of the page. Note that
the steps of Fourier–Motzkin elimination maintain rational or
integral rate coefficients throughout the procedure; this is why
we need not consider irrational edge distances. The equation

implies

(31)

where the expression for appears in the last equation at the
bottom of the page. Therefore by Lemma 4.4, for every
satisfying (31), the inequality must hold. It can be
written as

(32)

Fix a distance vector and let
. Then for , (31) can be

written as

(33)

and (32) can be written as

(34)

Since , then by (33), for every
and . Therefore, for every , can be bounded

from above by . Observe that it is possible
to choose for every by setting
and . Next notice that the LHS
of (34) is maximized among vectors in when the values of

are maximized; i.e., when . Equivalently
(34) holds if and only if the following inequality is satisfied:

(35)

this is the routing bound corresponding to the distance vector .

APPENDIX II
PROOF OF LEMMA 2.3

We begin by introducing some terminology and a result from
[24, Ch. 8].

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

. . .

...
...

...
. . .

...
...

...

. . .

(28)

(30)
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Let be an arbitrary nonempty subset of the inequalities
from (1) that define the polytope of all routing-feasible rate
vectors. Let represent the collection of rate-vectors in that
satisfy each inequality in with equality. If is nonempty, it
is called a face of the polytope . A face of is said to be a
facet of if there is no face of for which .
The following result from [24, Sec. 8.4], is central to the proof
of Lemma 2.3.

Theorem 4.5 ([24, Section 8.4], Theorem 8.2): Suppose
polytope has no inequality which is always satisfied by
equality. Further assume that is a minimal set of
inequalities that define . Let denote the row of
and let denote the element of column vector . For
each row , there is a one-to-one correspondence between the
defining halfspace and a facet of given by

, where we represent rate-tuples
as column vectors. Furthermore is the unique minimal
representation of up to the multiplication of inequalities by
positive scalars.

To apply the preceding theorem we must first establish that
there is no inequality in (1) that is always satisfied with equality.
We assume that there is at least one Steiner tree in the network
corresponding to each session so that there is at least
one rate-tuple with for each . Next consider
the inequality corresponding to the distance vector . Let

. If is
a rate-tuple on the face , then R is not the all-zero vector.
Furthermore, for any , will be a feasible rate-tuple
not on . Therefore, this inequality can not be always satisfied
with equality.

To complete the proof of the lemma, observe that if for two
distance vectors and the face is included in , then

is not a facet of . By the previous theorem, the inequality
corresponding to distance vector cannot be part of a minimal
representation of . Hence, distance vector is redundant in
the presence of distance vector .

APPENDIX III
AN ALGEBRAIC PROOF FOR PROPOSITION 2.5

Given distance vector , let
, denote the number of shortest routing trees for

session . Assume without loss of generality that for a fixed
is nondecreasing with so that

Suppose that is a routable rate-tuple lying on the
hyperplane . By Condition 1) of
Lemma 2.4 it follows that

Define to be one if edge is in the shortest routing
tree for session with respect to distance vector and 0 oth-
erwise. Then by writing each as the sum of the edge
distances for which edge occurs in the shortest routing
tree for session , we see that

(36)

Condition 1) of Lemma 2.4 states that edge is used by session
only if is on a shortest routing tree for . Therefore the partial

flow of session through routing tree is , which
is zero for . Condition 2) of Lemma 2.4 states that
every edge with a nonzero distance is fully utilized. Therefore
if for , then

(37)

Set to be the diagonal matrix with diagonal entries
, and set to be the

diagonal matrix with diagonal entries when
and when . It follows from (37) that ,
and hence as well. Diagonal matrices commute,
so . Consider any edge . If then

. If , then , and Condition 1) of
Proposition 2.5 implies that . Therefore, in
this case as well. Thus and it
follows that . Therefore

(38)

By Condition 2) of Proposition 2.5,
for each , and the counterpart to (36) is

(39)

Substituting (39) into (38) we obtain

and so does lie on the hyperplane
.

Thus, if a routable rate-tuple is on the hyper-
plane corresponding to , then it is also on the hyperplane cor-
responding to . Since the routing rate region can be described
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Fig. 5. An instance of a distance vector of Type 1 on a ring network.

Fig. 6. An instance of Case 1) on a ring network.

in terms of its defining hyperplanes, the bound given by the hy-
perplane for is redundant assuming we already have the bound
given by the hyperplane given by .

APPENDIX IV
PROOF OF THEOREM 3.5

Properties 1 and 2 are trivially satisfied in this case. Next we
show that Property 3 also holds. We begin our discussion with
unicast sessions. Consider two arbitrary vertices and of the
network as in Fig. 5 and the unicast session from to . Recall
that for any two vertices and and distance vector ,
represents the length of the clockwise path from to on the ring
with respect to the vector . Suppose . We
wish to show that so that the shortest path
between two vertices remains shortest for . We first discuss the
case for which there are at least two edges on the clockwise path
from to with edge distance of 1 in . Consider an arbitrary
edge on the clockwise path from to such that .
Let denote the next edge after on the path from to in
the clockwise direction with . Let denote the
clockwise path from to . Since , there must be
at least two distinct vertices, say and , on for which
the diameter starting from these points will intersect the arcs
corresponding to edges and (see Fig. 5). Next consider the
diameter starting from point corresponding to vertex . This
diameter should intersect at an edge between vertices

and . Therefore, for each pair of successive edges on the
clockwise path from to with unit edge distances in there
is an edge on the clockwise path from to with unit edge
distance in . Thus . Furthermore, the
two diameters starting from vertices and intersect ,
and will produce two more unit edge distances in that we
have not yet counted. Thus we have . To
complete this argument, consider the case with ;
in this case apparently . Finally, if

, we know that at least one of the diameters starting
from or will produce a unit edge distance on , and
hence .

Next we show that Property 3 holds for broadcast sessions.
Since the trees for routing broadcast sessions are the collection
of paths consisting of all but one edge in the network, a shortest
tree for a broadcast session corresponds to omitting an edge with
maximal edge distance. Since for all , we have to

show that if is a maximal edge distance in then .
To arrive at a contradiction, assume that . Then it follows
that there is another edge for which the diameters starting from
vertices and both intersect the arc corresponding to edge
. Hence , which contradicts the maximality of .

APPENDIX V
PROOF OF THEOREM 3.6

To construct for a Type 2 distance vector , we use the
Basic Generation Procedure or the Basic Generation Procedure
followed by the change of a particular edge distance from 0 to
1. Observe that Property 1 is trivially satisfied. Since we are
only considering positive distance vectors , then Property 2
also holds. We next discuss Property 3. Assume that is
the unique pair of vertices satisfying . There
are two subcases to consider:

1) Suppose the Basic Generation Procedure produces a vector
with . Then in this case we do not

need to make any changes to vector . Let us study a uni-
cast session between two vertices and and show that
Property 3 holds for it. If the clockwise path from to
includes the clockwise path from to , then

. Similarly,
, which shows that Property 3 holds for the uni-

cast session between and . A symmetric argument holds
for the case where and are both located on the counter-
clockwise path from to .
Next assume that is located on the clockwise path from

to and is located on the counterclockwise path from
to and that as depicted in Fig. 6.

(By the assumption, .) By the same
argument as in the proof of Theorem 3.5, we can show
that for each pair of successive edges on the clockwise path
from to with unit distance in , there is an edge with
unit distance on the clockwise path from to . Hence

. Observe that the diameter orig-
inating at vertex will intersect an edge between and

, and will produce another unit edge distance which we
have not yet counted. (Note that vertex can not produce
any extra unit distance edge as the diameter originating at
this vertex intersects the circle at .) Thus,

. By symmetry, . By sum-
ming these two inequalities we obtain

which shows that Property 3 holds for the unicast session
between and .
The argument for broadcast sessions from Theorem 3.5
also holds for this case without any change, and so Property
3 is satisfied for broadcast sessions in this case as well.

2) Next suppose the lengths of the different paths between
and do not remain the same for vector . We first describe
how to modify distance vector and we then show that
the resulting distance vector satisfies Property 3. Fig. 7
depicts the circle corresponding to the edge distances in .
Observe that since the unicast session between
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Fig. 7. An instance of Case 2) on a ring network.

Fig. 8. The situation in Case 2) after moving � on �.

Fig. 9. The situation in Case 2) with the shorter path from � to � in the clock-
wise direction.

and do not have two equal length routing paths.
Assume without loss of generality that . Consider
the clockwise path from to and the clockwise path
from to . With an argument similar to that for Type 1
distance vectors we can show that corresponding to every
pair of successive edges with unit distance in on the first
path, there is an edge with unit distance on the second path.
Thus we have . Observe that the
diameter originating at vertex intersects the second
path between vertices and and produces another unit
edge distance which we have not yet counted. Furthermore,
edge will not be intersected by any diameter and thus

. We have the following relationship:

Now consider Fig. 8 in which we have moved the point
corresponding to vertex an arbitrarily small distance
in the counterclockwise direction. If we apply the Basic
Generation Procedure on this new set of edge distances and
call the resulting binary set of distance vector , then

for all edges except for edge which is intersected by
the diameter originating at vertex , and possibly for edge

which is now intersected by the diameter originating
at vertex ; i.e., . If we use the argument
for Type 1 distance vectors here, we find that for every
pair of successive unit edge distances in for the edges
on the clockwise path from to there is another edge
with distance one on the clockwise path from to , and
thus . On the other hand, note
that the two diameters originating at vertices and both
produce two edges with unit distance in which we have
not yet counted. Thus . Using the
relationship of elements in and we have

and . Thus
we have

Recall that . Therefore the condi-
tion implies , and in this
case we have . In order to obtain

we manually change the value of
from zero to one in . We next show that Property 3 holds
for distance vector .
First we consider the unicast sessions. For all unicast ses-
sions where both the source and destination are on the
clockwise or counterclockwise path from to we use
the argument from the preceding case. Next consider the
unicast session between two vertices and , where is
located on the clockwise path from to and is located
on the counterclockwise path from to on the ring. First
assume that the shortest path between and by is the
clockwise path from to (see Fig. 9) . Using the ar-
gument for Type 1 distance vectors, we conclude that for
every pair of successive unit edge distances on the clock-
wise path from to there is another unit edge distance on
the clockwise path from to , and for every pair of succes-
sive unit edge distances on the clockwise path from to

there is another edge with distance of one on the clock-
wise path from to . Since we have reset , we ob-
tain and .
Thus . Now if the diameters
starting at and generate two distinct unit edge dis-
tances in , these two along with the one generated by the
diameter starting at will add three more ones to
and result in .
However, it might happen that the diameters starting at
and both intersect edge on . In this case we use the
following argument. We have as the
result of the modifications. Therefore,

and, hence, .
However because there is no
diameter intersecting the clockwise path between
and . To arrive at a contradiction, suppose that there is at
least one diameter intersecting the clockwise path between

and . By assumption the diameters starting at
and both intersect edge on , and it follows that any
diameter that intersects the clockwise path between
and must originate at a vertex between vertices and

. However, there is no vertex between and ,
and so there is no diameter intersecting the clockwise path
between and . Therefore .
Thus, . Since

and , we have
. Finally

Next suppose the shortest path between and is the coun-
terclockwise path (see Fig. 10). Using the argument for
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Fig. 10. The situation in Case 2) with the shorter path from � to � in the coun-
terclockwise direction.

Type 1 distance vectors as in the previous instance, we con-
clude that and

. By accounting for the two unit edge distances
produced by the diameters originating at and which we
have not yet counted and by summing the two inequalities
we get . Hence, the shortest path for
will remain shortest for and Property 3 holds for unicast
sessions.
To complete our proof we need to show that Property 3’
holds for broadcast sessions. Consider a broadcast session

and the set of its complementary trees. Since each routing
tree for a broadcast session is the total ring after removing
a single edge from it, then the set of complementary trees
will be the set of all trees formed by single edges and
their end vertices. Then to satisfy Property 3’, we need
to show that if edge satisfies , then

. First notice that as we saw in the
argument for Type 1 distance vectors, the Basic Generation
Procedure results in every edge with largest edge distance
having a unit distance in . Moreover, the modifications
for this case increase one edge distance from zero to one.
Therefore all maximum length complementary trees with
respect to will have length 1 under , and hence Property
3’ will be satisfied.

APPENDIX VI
PROOF OF THEOREM 3.7

Consider the case where there are exactly pairs of vertices,
say for which

for all . Without loss of generality
we assume that

, as depicted in Fig. 11. To construct , we first
decompose into subvectors , with

for and
.

From Fig. 11 it is easy to see that
for and . Therefore
if we form the circle corresponding to subvector and relabel
the vertices on it from 1 to , we obtain

for
and . Observe
that each subvector , , in isolation corresponds
to a circle with vertices which has exactly one pair of
vertices with equal length clockwise and counterclockwise

Fig. 11. The situation where there are several pairs of vertices with equal length
clockwise and counterclockwise paths.

Fig. 12. The case where � � � .

paths between them, namely vertex 1 and vertex ;
if there were more than one such pair, then there would be
another pair and of vertices on the original ring such that

, , and ,
contradicting our initial assumption. Hence is a Type 2
distance vector.

For every we use the argument for Type 2 dis-
tance vectors to construct a binary distance vector .
We obtain from the relationships

for
and

. Obviously satisfies Properties 1 and 2. Next we prove
that it also satisfies Property 3.

We first consider unicast sessions. The construction of re-
sults in the following relationships:

(40)

Consider a pair and of vertices on the ring and the unicast
session between them. Assume without loss of generality that

and , so that .
We must establish that . To show this, first
assume that (see Fig. 12) . In this case, it follows from
(40) that

(41)

Next let (see Fig. 13). Then by assumption [see
(42) at the bottom of the next page]. It follows from (42) that

(43)

Since satisfies Property 3 for it follows from (43) and the
definition of that

(44)

Therefore (44) and (40) imply (45), shown at the bottom of the
next page. Hence distance vector satisfies Property 3 for the
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Fig. 13. The case where � � � � � .

unicast sessions. To prove that this is also true for broadcast ses-
sions, we have to show that all edges with largest edge distances
for have unit edge distances for . Let be an
edge distance with largest distance for . Then it must corre-
spond to an edge with largest distance for . Hence our earlier
argument for Type 2 distance vectors establishes that the posi-
tion corresponding to in is equal to one, and this proves
our claim.

APPENDIX VII
PROOF OF THE NETWORK CODING BOUND FOR A RING WITH

FOUR VERTICES

Consider a ring network with four vertices. We replace every
edge in the network with two oppositely directed edges and ob-
tain the directed graph of Fig. 3. Suppose that the net-
work is clocked, i.e., a universal clock ticks times. For this
network we introduce the following notation for the network
coding setting from time 1 to .

• Let denote the message of session .
• Let denote the bitstream of edge from to at time

and .

Vertex transmits the bitstream , after clock
tick and before clock tick for and
vertex receives bitstream at clock tick . In a net-

work coding solution, is a function of
and . After time , at every vertex

the received messages with destination
can be decoded as a function of and

. For this setting we prove the following
lemma.

Lemma 4.6: For any network and any network coding so-
lution, there is a one to one correspondence between the set of
messages in the network , and the set of bit-
streams of the edges .

Proof: Since the encoding functions at vertices are de-
terministic, a set of messages uniquely determine a set of bit-

streams. Next suppose that there are two different realizations of
, say and

corresponding to a realization of bitstreams ,
say . It means that there is at least one
session for which . Next, we show that which
is another realization of messages and is a combination of mes-
sages in and as follows:

if ,
if

(46)

also results in the bitstream . We use induction over time in-
stances. For every vertex , is a function of .
For , the realization of corresponding to is the
same as its realization for , and for , the realization
of corresponding to is the same as its realization for

. Therefore, by assumption will have the same realiza-
tion for , and . As the induction step, suppose that for
time instance , the realization of is the same for , ,

and . Next, is a function of and

. Therefore, the realization of cor-
responding to is equal to its realization corresponding to
if and to its realization corresponding to if .
Thus, by the induction hypothesis, will have the same
realization for , , and , which completes our induction.

Next consider a vertex . First notice that since
, the realization of and is

the same for set of messages and . Therefore, will decode
the same messages for all sessions with destination in both
cases. But this contradicts the fact that has two different
realizations for and . Therefore, every set of bitstreams

corresponds to a unique set of messages
.

We apply the result of Lemma 4.6 to the ring network of
Fig. 3. Furthermore in the ring network of Fig. 3 every real-
ization of messages and bitstreams

uniquely determines a realization of
bitstreams . Therefore, to-
gether with Lemma 4.6, we conclude that every realization of

and
uniquely determines a realization of and vice
versa. Therefore, (47), shown at the top of the next page, holds.
By expanding the RHS of (47), we obtain (48), shown at the
top of the next page. Next we find a lower bound for .
First notice that consists of the set of messages originating
at vertex 2 and the bitstreams received by vertex 2. Therefore,

(42)

(45)
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(47)

(48)

(49)

(50)

this set uniquely determines the messages destined for vertex
2. Hence, this set can be used to obtain the set of messages

. By an analogous argument for
vertex 4 it follows that the set of messages is a function of

. Thus the mutual information term in (48) can be written as
. By expanding this term and using the data

processing inequality we have

We combine the preceding bound with (48) to establish (49),
shown at the top of the page. By the independence of messages
of different sessions and (49) we have (50), shown at the top of
the page. Notice that and .
It follows that for a ring with four vertices:

(51)
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